
Propositional Calculus

Propositional Calculus, also called Sentential Calculus or Zeroth Order Logic, examines
the structure of certain fragment common both to natural languages as well as to lan-
guages of scientific theories, namely the abstract patterns or forms of propositions or
statements occurring in them as well as the relations between them which can be inferred
from their form. This will make possible a complete description of valid arguments in
terms of structural relations between the forms of their constituents.
We will take advantage of the fact that our readers have already some acquaintance

with Propositional Calculus, including the logical connectives and their meaning, truth
tables, tautologies, etc. This allows us to focus on some general “philosophical” features
of Propositional Calculus which are not always part of the usual courses and use this
familiar and rather elementary platform for the exposition of some topics and issues
which will reappear later on within the Predicate Calculus in a more advanced form.

Propositions and Propositional Forms

A propostion or a statement is an affirmative grammatical sentence making a meaningful
announcement which is either true or false, no matter whether we or whoever are able
to decide its verity. We say that the truth value of a proposition is 1 if it is true and it
is 0 if it is false.
Given some propositions we can form new ones combining them by means of the

unary logical connective not and the binary logical connectives and, or, if . . . then,
if and only if, either . . . or, neither . . . nor, etc. Propositional Calculus is based on
the following fundamental observation:

If A is a proposition formed of some simpler propositions p1, . . . , pn by means of
logical connectives in a certain way then the truth value of A can be determined just
out of the truth values of the propositions p1, . . . , pn and the way how A is formed,
regardless of the meaning and content of the propositions p1, . . . , pn.

In other words, the truth value of A can be computed from the truth values of its
components p1, . . . , pn and the abstract pattern or the form of A.
As a consequence, the subject of Propositional Calculus is not primarily propositions

themselves but the forms propositions can take on, according to the way how they are
composed from simpler propositions by means of logical connectives. These abstract
forms we call propositional forms; they are expressions (words) of some formal language
to be introduced below. In order to describe the syntax of the language of Propositional
Calculus we will codify its symbols and describe the way how its words are generated.
The language of Propositional Calculus has the following symbols divided into three

groups:

• Propositional variables: p, q, r, p0, p1, p2, . . . , q′, q′′, . . .
• Logical connectives: ¬ (not), ∧ (and), ∨ (or), ⇒ (if . . . then or implies),
⇔ (if and only if ) (two would suffice)

• Auxiliary symbols: ( , ) (parentheses ) (they could be avoided)
1
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We denote by P the set of all propositional variables. We assume that the set P is
countably infinite at least in the potential sense, i.e., whenever we have any finite list of
propositional variables p1, . . . , pn, we are able to find some new propositional variable
q not included in that list and, at the same time, all the propositional variables p ∈ P
can be set into a one-to-one correspondence with the natural numbers n ∈ N.
Propositional forms are certain finite strings, i.e., words, consisting of the above

quoted symbols. The set VF(P ) of all propositional forms over the set of propositional
variables P is defined recursively as the smallest set containing all the propositional vari-
ables and closed with respect to the application of logical connectives, i.e., the smallest
set satisfying the following two conditions:

1◦ P ⊆ VF(P )
(every propositional variable p ∈ P is a propositional form over the set P )

2◦ if A,B ∈ VF(P ) then ¬A, (A ∧B), (A ∨B), (A⇒ B), (A⇔ B) ∈ VF(P )
(if the strings A, B are propositional forms over the set P then so are the strings
¬A, (A ∧B), (A ∨B), (A⇒ B) and (A⇔ B))

According to 1◦, propositional variables are sometimes referred to as atomic proposi-
tional forms. As a consequence of the fact that the set P of all propositional variables
is countable, the set VF(P ) of all propositional forms over P is countable, as well.
The set VF(Q) of all propositional forms over any nonempty set of propositional

variables Q ⊆ P can be defined in an analogous way. In particular, for a finite set
Q = {p1, . . . , pn}, we denote

VF(Q) = VF(p1, . . . , pn)

Since every propositional form A ∈ VF(P ) is composed from atomic propositional forms
by applying the rule 2◦ just finitely many times, there always is a finite number of
propositional variables p1, . . . , pn ∈ P such that A ∈ VF(p1, . . . , pn).
If A, B are propositional forms then the propositional form ¬A is called the negation

of A, and the propositional forms (A ∧ B), (A ∨ B), (A ⇒ B) and (A ⇔ B) are called
the conjunction, the disjunction or the alternative, the implication and the equivalence
of A and B, respectively.

Remark. (a) According to the just stated definition not all finite strings of symbols
of the language of Propositional Calculus are propositional forms. For instance, the
expressions p, q, r, ¬p, (p ∧ q), (¬p ⇒ r), ((p ∧ q) ∨ (¬p ⇒ r)) can easily be recognized
as propositional forms, while the expressions like (p¬q), ¬pp ⇒)(r¬ obviously fail to
be propositional forms. Less obvious is the finding that neither the expressions p ∧ q,
¬p⇒ r, (p∧ q)∨ (¬p⇒ r) are propositional forms although we are inclined to recognize
them to be. In order to reconcile the above definition with our intuition and the usual
practice, we accept the convention of omitting the outermost parentheses (which clearly
are superfluous) in any propositional form. Thus we consider the expressions like p ∧ q,
¬p ⇒ r, (p ∧ q) ∨ (¬p ⇒ r) as denoting the propositional forms (p ∧ q), (¬p ⇒ r),
((p ∧ q) ∨ (¬p⇒ r)), respectively.

(b) We could completely manage without the parentheses using the Polish notation.
In that case point 2◦ of the above definition would be modified as follows:
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2∗ if A,B ∈ VF(P ) then ¬A, ∧AB, ∨AB, ⇒AB, ⇔AB ∈ VF(P )
(if the strings A, B are propositional forms over the set P then so are the strings
¬A, ∧AB, ∨AB, ⇒AB and ⇔AB)

For instance, in Polish notation the propositional form (p ∧ q) ∨ (¬p ⇒ r) would be
written as

∨∧pq⇒¬pr

However cumbersome and hardly legible this expression may appear to us, it should be
realized that from the point of view of a computer assisted processing this aspect is of
almost no importance.

(c) In spite of the names we have attached to the logical connectives pointing to
their intended role, they should be regarded as mere graphical symbols deprived of any
meaning for the moment. They will only acquire their usual meaning later on, when we
develop the semantics of Propositional Calculus.

(d) It should be noted that the signs A, B, C used to denote arbitrary propositional
forms, the sign P and the expression VF(P ) denoting the set of all propositional variables
and the set of all propositional forms, respectively, etc., do not belong to the language
of Propositional Calculus— they are symbols or expressions of certain metalanguage we
use in the study of Propositional Calculus.

Let us turn reader’s attention to the point that VF(P ) is the smallest set satisfying
conditions 1◦ an 2◦. This inconspicuous requirement endows us with a powerful tool for
proving facts about propositional forms, namely with the proof method by induction on
complexity : In order to establish that all propositional forms have some property it is
enough to show that the set of all propositional forms having this property satisfies the
above conditions 1◦ and 2◦.

Theorem. Let M ⊆ VF(P ) be any set of propositional forms satisfying the following
two conditions:
1◦ P ⊆M

(every propositional variable p ∈ P belongs to the set M)
2◦ if A,B ∈M then ¬A, A ∧B, A ∨B, A⇒ B, A⇔ B ∈M

(M is closed with respect to the formation of propositional forms by means of logical
connectives)

Then M = VF(P ), i.e., every propositional form over P belongs to M .

The reader should compare the induction on complexity with the usual method of
induction, used in proving that certain property holds for all natural numbers: Since
the set N of all natural numbers is the smallest set containing 0 and closed with respect
to the successor operation n 7→ n+1, in order to show that certain set M ⊆ N contains
all natural numbers, i.e., M = N, it is enough to show that 0 ∈M and, for every n ∈M
also n+ 1 ∈M . In the induction on complexity the role of the number 0 ∈ N is played
by the propositional variables p ∈ P , and the role of the successor operation is played by
the logical connectives. Already in this moment it could be anticipated that for the sake
of induction proofs it would be desirable to reduce the number of logical connectives for
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which the step 2◦ has to be performed to some minimal list. We will return to this point
in the next paragraph.

Interpretations, Truth Tables and Logical Equivalence

Next to syntax we will develop the semantics of Propositional Calculus. Let us recall that
in Logic we take no account of the content of propositions, and the propositional forms
are indeed deprived of any content. Nevertheless, we can still examine the situations
under which they become true or false. These situations will be called interpretations or
truth evaluation and they will represent the way of assigning however limited but still
certain meaning to propositional forms.
We start by introducing the boolean algebraic operations on the two element set {0, 1}

of the truth values 0 (false) and 1 (true), corresponding to the logical connectives and
denoted by the same symbols. They are given by the following tables:

¬ 0 1
1 0

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

⇒ 0 1
0 1 1
1 0 1

⇔ 0 1
0 1 0
1 0 1

In Propositional Calculus an intepretation or a truth evaluation is any mapping
I : P → {0, 1}, i.e., any assignment of truth values 0 or 1 to the propositional vari-
ables. Intuitively, such an interpretation represents a possible situation described in
terms of the assignment of truth values to the propositional variables.
Every interpretation I : P → {0, 1} will be extended to a mapping I : VF(P )→ {0, 1},

denoted by the same symbol and still called an interpretation or a truth evaluation, by
means of the following recursive definition

I(¬A) = ¬I(A) I(A ∧B) = I(A) ∧ I(B) I(A⇒ B) = I(A)⇒ I(B)

I(A ∨B) = I(A) ∨ I(B) I(A⇔ B) = I(A)⇔ I(B)

for any A,B ∈ VF(P ), assuming that the values I(A) and I(B) have already been
defined. Instead of I(A) = 1 we say that A is true or satisfied in the interpretation I;
I(A) = 0 means that A is false in the interpretation I.
The reader should realize the following two facts:
• In each of the above equalities the signs ¬, ∧, ∨,⇒,⇔ denote the logical connectives
on the left side while on the right side they denote the corresponding boolean
operations on the set {0, 1}.

• The equality symbol = and the signs I, J , denoting arbitrary truth evaluations,
belong to our metalanguage and not to the language of Propositional Calculus itself.

Just from this moment on, and by the virtue of the tables of the operations ¬, ∧,
∨, ⇒ and ⇔ on the set {0, 1} of the truth values, the corresponding logical connectives
can rightfully bear their names of negation, conjunction, alternative or disjunction (in
nonexclusive sense), implication and equivalence, respectively.
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It can be easily realized that the above recursive definition is redundant in some
sense. It would be enough to describe the extension of the mapping I : P → {0, 1}
according to the negation ¬ and one (and anyone) of the binary connectives ∧, ∨, ⇒;
then the remaining equalities would be satisfied, as well. In other words, a mapping
I : VF(P ) → {0, 1} is (an extension of) an interpretation if and only if it satisfies the
equality I(¬A) = ¬I(A), and one (and anyone) of the equalities I(A∧B) = I(A)∧I(B),
I(A ∨ B) = I(A) ∨ I(B), I(A ⇒ B) = I(A) ⇒ I(B) for all A,B ∈ VF(P ). Then it
automatically satisfies the remaining equalities, as well. As a consequence, the notion
of an interpretation (truth evaluation) could be defined in a more elegant way, as a
mapping I : VF(P )→ {0, 1} preserving the operations of the algebras (VF(P ); ∧,∨,¬),
({0, 1}; ∧,∨,¬), i.e., as a homomorphism I : (VF(P ); ∧,∨,¬)→ ({0, 1}; ∧,∨,¬).
Let us make the just discussed point more precise. We call two propositional forms

A,B ∈ VF(P ) logically equivalent if I(A) = I(B) for every interpretation I : P → {0, 1};
in that case we write A ≡ B. (It should be realized that the sign ≡, similarly as the signs
A, B, C, P , I, J or the expression VF(P ), etc., does not belong to the symbols of the
language of Propositional Calculus— it is a symbol of our metalanguage, again.) The
reader is asked to verify that the relation of logical equivalence ≡ is reflexive, symmetric
and transitive, hence it is indeed an equivalence relation on the set VF(P ).
It is known that any of the pairs (¬,∧), (¬,∨), (¬,⇒) forms a complete list of logical

connectives, i.e., any propositional form A ∈ VF(P ) is logically equivalent to some
propositional form A′ containing the same propositional variables as A and involving
just the logical connectives from one (and anyone) of the three pairs above.
Choosing the connectives ¬, ∧ as the primitive ones, the remaining connectives could

be introduced as abbreviations for the propositional forms on the right:

A ∨B ≡ ¬(¬A ∧ ¬B)
A⇒ B ≡ ¬(A ∧ ¬B)
A⇔ B ≡ ¬(A ∧ ¬B) ∧ ¬(¬A ∧B)

Choosing ¬ and ∨ as primitive connectives we would have

A ∧B ≡ ¬(¬A ∨ ¬B)
A⇒ B ≡ ¬A ∨B
A⇔ B ≡ ¬(¬(A ∨ ¬B) ∨ ¬(¬A ∨B))

Finally, if our primitive connectives were ¬ and ⇒, we would have

A ∧B ≡ ¬(A⇒ ¬B)
A ∨B ≡ ¬A⇒ B

A⇔ B ≡ (A⇒ ¬B)⇒ ¬(¬A⇒ B)

It follows that we could have used just the binary connective ¬ and just one (and
anyone) from among the three binary connectives ∧, ∨, ⇒ in the recursive definition of
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the notion of propositional form in the previous paragraph; the forth binary connective
⇔ becomes superfluous in any case.
Additionally, we will make use of the logical equivalences of associativity of the con-

nectives ∧ and ∨

(A ∧B) ∧ C ≡ A ∧ (B ∧ C) and (A ∨B) ∨ C ≡ A ∨ (B ∨ C)

for any propositional forms A,B,C ∈ VF(P ). This allows us to omit the superfluous
parenthesis in conjunctions and alternatives of an arbitrary finite number of proposi-
tional forms and write simply A ∧ B ∧ C, A ∨ B ∨ C, A1 ∧ . . . ∧ Am, B1 ∨ . . . ∨ Bn,
etc.
It is worthwhile to notice that we could manage with a single binary connective,

namely the Sheffer stroke | (the NAND operator) which can be expressed by means of
¬ and ∧, or by means of ¬ and ∨ as follows

A|B ≡ ¬(A ∧B) ≡ ¬A ∨ ¬B

Conversely, the standard logical connectives ¬, ∧ and ∨ can be expressed in terms of
the Sheffer stroke as follows

¬A ≡ A|A
A ∧B ≡ (A|B)|(A|B)
A ∨B ≡ (A|A)|(B|B)

The task to find the corresponding expressions for A ⇒ B and A ⇔ B is left to the
reader.
Another single logical connective capable to generate all the remaining ones is the

NOR operator †, also known as the Peirce arrow or Quine dagger, which is dual to the
Sheffer stroke. In terms of ¬ and ∧, or ¬ and ∨, respectively, it can be expressed as
follows

A †B ≡ ¬A ∧ ¬B ≡ ¬(A ∨B)

The reader is asked to express the usual logical connectives ¬, ∧ and ∨, ⇒ and ⇔ in
terms of the Quine dagger †, and, at the same time to find the expressions for the Sheffer
stroke in terms of the Quine dagger and vice versa.

Tautologies and Other Classes of Propositional Forms

Using the concept of interpretation we can single out several important classes of propo-
sitional forms. A propositional form A ∈ VF(P ) is called

• a tautology if I(A) = 1 for every interpretation I : P → {0, 1}
• a contradiction if I(A) = 0 for every interpretation I : P → {0, 1}
• satisfiable if I(A) = 1 for at least one interpretation I : P → {0, 1}
• refutable if I(A) = 0 for at least one interpretation I : P → {0, 1}
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There is a twofold duality between the four notions above: the inner duality

• A is a tautology if and only if ¬A is a contradiction
• A is satisfiable if and only if ¬A is refutable

and the outer duality

• A is a tautology if and only if A is not refutable
• A is a contradiction if and only if A is not satisfiable

It can be easily seen that, for any propositional forms A, B, we have A ≡ B if and
only if the propositional form A⇔ B is a tautology.
The question whether an arbitrary propositional form A belongs to any of the four

classes defined above can be decided algorithmically using the method of truth tables,
evaluating the truth values I(A) for all the interpretations I : P → {0, 1}. In view of
the fact that, for an infinite set P , there are infinitely many such interpretations, it is
important that to that end it is enough to deal just with finitely many of them.

Theorem. Let A ∈ VF(P ) be any propositional form such that all the propositional
variables occurring in A are included in the list p1, . . . , pn. Then I(A) = J(A) for any
truth evaluations I, J : P → {0, 1} such that I(pk) = J(pk) for each k = 1, . . . , n.

In other words, the value I(A) of a truth evaluation I on a propositional form A
depends on the values of I on the finite set of propositional variables occurring in A,
only. However obvious and intuitively clear this fact may appear, we nonetheless prove
it, mainly in order to illustrate the proof method by induction on complexity.

Demonstration. Denoting Q = {p1, . . . , pn} and

M = {A ∈ VF(Q) : I(A) = J(A)}

we are to show that M = VF(Q). Since I and J coincide on the set Q, we have Q ⊆M ,
which is the initial induction step 1◦. In order to verify the induction step 2◦, assume
that A,B ∈M , i.e., A,B ∈ VF(Q), and I(A) = J(A) as well as I(B) = J(B). Then, as
both I, J preserve the logical connectives,

I(¬A) = ¬I(A) = ¬J(A) = J(¬A)
I(A ∧B) = I(A) ∧ I(B) = J(A) ∧ J(B) = J(A ∧B)

hence both ¬A,A ∧B ∈M . Similarly, we could show that A ∨B,A⇒ B,A⇔ B ∈M ,
too. However, in view of our previous accounts, it is clear that the induction step 2◦ for
the connectives ∨, ⇒ and ⇔ is not necessary to perform.

Example. Using the truth table method, it can be easily shown that the following
propositional form

(p⇒ (q ⇒ r))⇔ ((p ∧ q)⇒ r)

is a tautology. Denoting by L the propositional form p ⇒ (q ⇒ r) and by R the
propositional form (p ∧ q)⇒ r, we have
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p q r q ⇒ r L p ∧ q R L⇔ R

1 1 1 1 1 1 1 1
1 1 0 0 0 1 0 1
1 0 1 1 1 0 1 1
0 1 1 1 1 0 1 1
1 0 0 1 1 0 1 1
0 1 0 0 1 0 1 1
0 0 1 1 1 0 1 1
0 0 0 1 1 0 1 1

As a consequence,
A⇒ (B ⇒ C) ≡ (A ∧B)⇒ C

for any propositional forms A, B, C.
More important and interesting than filling in mechanically the above truth table it

is to realize what kind of logical law, called the Law of Exportation, is expressed by this
tautology or by the above logical equivalence. The left hand form A⇒ (B ⇒ C) states
that “if A, then B implies C”. The right hand form (A∧B)⇒ C states that “A and B
jointly imply C”. These two forms of statements are always equivalent: going from the
left to the right it is possible to join the two assumptions A, B to a single assumption
A∧B; going from the right to the left it is possible to divide the assumption A∧B into
its constituents A and B and apply them consecutively one after the other.

Exercise. A propositional form is called an elementary conjunction if it has the shape
B1 ∧ . . .∧Bm where each of the forms Bi is either a propositional variable or a negation
of some propositional variable. A propositional form is called a disjunctive normal form
if it has the shape C1∨ . . .∨Ck where each of the forms Cj is an elementary conjunction.
Show that every propositional form A ∈ VF(p1, . . . , pn) is logically equivalent to some
disjunctive normal form A′ ∈ VF(p1, . . . , pn). To this end design an algorithmic method
how to obtain the disjunctive normal form A′ ≡ A from the truth table of the form A.
Similarly, define the dual notions of an elementary disjunction and of a conjunctive

normal form and show that every propositional form is logically equivalent to some
conjunctive normal form.

Exercise. (Boolean functions) Let A ∈ VF(p1, . . . , pn) be a propositional form in
propositional variables p1, . . . , pn. Then A can be turned into a Boolean function
FA : {0, 1}n → {0, 1}, i.e., into an n-ary operation on the two-element set {0, 1} given
by FA(e1, . . . , en) = AI for any e1, . . . , en ∈ {0, 1}, where I : {p1, . . . , pn} → {0, 1} is the
interpretation on the set {p1, . . . , pn} such that I(pk) = ek for k = 1, . . . , n.
(a) Show that for any propositional forms A,B ∈ VF(p1, . . . , pn) we have FA = FB

if and only if A ≡ B.

(b) Prove that there are exactly 22
n

boolean functions {0, 1}n → {0, 1} for each n ≥ 1.
What about n = 0?

(c) Show that for every boolean function F : {0, 1}n → {0, 1} there infinitely many
propositional forms A ∈ VF(p1, . . . , pn) such that F = FA.
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Exercise. Let A ∈ VF(p1, . . . , pn) be a propositional form in propositional variables
p1, . . . , pn and B1, . . . , Bn ∈ VF(P ) be arbitrary propositional forms. We denote by
A(B1, . . . , Bn) the propositional form obtained by substituting the forms B1, . . . , Bn
into the form A in places of the variables p1, . . . , pn, respectively. For instance, if A
is the form (p ∧ ¬q) ⇒ (q ∨ r) in propositional variables p, q, r and B, C, D are the
propositional forms r ∨ s, p⇒ ¬r, q, respectively, then A(B,C,D) denotes the form

((r ∨ s) ∧ ¬(p⇒ ¬r))⇒ ((p⇒ ¬r) ∨ q)
(a) Demonstrate that if A is a tautology (contradiction) then A(B1, . . . , Bn) is also a

tautology (contradiction) for any B1, . . . , Bn.
(b) Give examples of a satisfiable (refutable) form A and of forms B1, . . . , Bn such

that A(B1, . . . , Bn) is not satisfiable (refutable).

Theories in Propositional Calculus

In common language the word theory usually refers to some interconnected system of
knowledge, consisting of statements about certain topic and including also a method-
ology of obtaining and verifying or refuting these statements. The statements or proposi-
tions forming the “body of knowledge” of the theory could have been obtained in various
ways: some of them may express certain empirical facts established by observation or
experiments, some of them may be a part of common beliefs, tradition or cultural her-
itage, some of them may be mere hypotheses to be verified or refuted in the future, and,
finally, some of them may be derived from any of the previously mentioned ones as their
logical consequences.
Following the leading intention of logic, we will ignore the content, methodology and

the overall character of a theory, we will neither distinguish which of its postulates are
true or false, which are firmly established and which are mere hypotheses, nor take care
of the way how all that happened. We will bring to the focus just a single aspect of
all such theories, namely the structure of logical inference, i.e., the way new statements
necessarily follow or can be derived from those made into the departing postulates or
axioms of the particular theory.
Accordingly, a propositional theory or simply a theory is any set T ⊆ VF(P ) of propo-

sitional forms; its elements A ∈ T are called the specific axioms or just the axioms of
T . We warn the readers not to take this definition word for word, not even within the
framework of Propositional Calculus, let alone when speaking about a broader perspec-
tive. It should rather be understood as stating that, within Propositional Calculus, a
theory is given or uniquely determined by the set of its specific axioms. Propositional
Calculus will take care of the rest, i.e., of the structure of logical inference, which is the
same for all the theories.
An interpretation I : VF(P ) → {0, 1} is called an interpretation of the theory T if

I(A) = 1 for each A ∈ T , i.e., if all the axioms of T are true in the interpretation
I. Intuitively, an interpretation of the theory T represents a situation in which all the
axioms of the theory T , hence T itself, are satisfied.
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A propositional form B is a logical consequence of the axioms of a theory T or just
a logical consequence of T if I(B) = 1 for every interpretation I of the theory T .
Alternatively we say that B is true or valid or satisfied in T , or that T entails B. In
symbols we write T ⊨ B. Intuitively, T ⊨ B means that, in every possible situation in
which all the axioms of the theory T are satisfied, B is satisfied as well.
Instead of ∅ ⊨ B we write just ⊨ B; it means that B is true under every interpretation

I : P → {0, 1}, in other words, B is a tautology.
As it follows from the theorem below, the question whether T ⊨ B can be algorithmi-

cally decided using truth tables, for any theory T with just finitely many specific axioms
and each propositional form B ∈ VF(P ).

Theorem. Let T = {A1, . . . , An} be a theory with finitely many specific axioms and
B ∈ VF(P ). Then T ⊨ B if and only if the propositional form (A1 ∧ . . . ∧ An) ⇒ B is
a tautology.

Demonstration. Assume that T ⊨ B. Let I : VF(P ) → {0, 1} be any interpretation.
Then either I(Ak) = 0 for at least one k = 1, . . . , n, or I(Ak) = 1 for each k = 1, . . . , n.
In the first case I(A1 ∧ . . . ∧An) = 0, therefore,

I((A1 ∧ . . . ∧An)⇒ B) = 1

In the second case I is an interpretation of the theory T , hence I(B) = 1 since T ⊨ B.
Then

I((A1 ∧ . . . ∧An)⇒ B) = 1

again. Thus (A1 ∧ . . . ∧An)⇒ B is indeed a tautology.
Conversely, assume that (A1 ∧ . . . ∧ An) ⇒ B is a tautology, i.e., it is true in every

interpretation I. If I is an interpretation of T , then I(A1 ∧ . . . ∧An) = 1. Thus

I((A1 ∧ . . . ∧An)⇒ B) = 1

can happen only if I(B) = 1, too. It follows that T ⊨ B.
In general, however, T may have infinitely many specific axioms. Even in that case,

in order to show that B is not a logical consequence of T , i.e., T ̸⊨ B, it is enough to
find a single interpretation I of T such that I(B) = 0. If this is the case, then we say
that (the validity of) B in T was refuted by a counterexample. However, in order to
confirm that T ⊨ B, the definition requires of us to determine the truth value I(B) for
infinitely many interpretations of T , which seems to be an unrealizable task.
In mathematics, however, the usual way how to establish the validity of some state-

ment within some theory is by proving it from the axioms of the theory and not by
examining all the possible situations in which these axioms are true and checking the
validity of the statement in each of these situations. Also in Propositional Calculus we
will develop the syntactic concepts of proof and provability with the aim to get in grasp
with the semantic concept of validity or truth by means of them.

Axiomatization of Propositional Calculus
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In order to have a brief and concise axiomatization of Propositional Calculus we will
proceed as if the set VF(P ) of all propositional forms were built of the propositional
variables by means of the logical connectives ¬ and⇒, only. Thus the remaining logical
connectives are considered as certain abbreviations displayed in the previous paragraph.
An alternative axiomatization using the logical connectives ¬, ∧, ∨ and⇒ can be found
in the Appendix to this Chapter.

Logical axioms. (4 axiom schemes)
For any propositional formsA, B, C, the following propositional forms are logical axioms:

(LAx 1) A⇒ (B ⇒ A)
(LAx 2) (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))
(LAx 3) (A⇒ B)⇒ ((A⇒ ¬B)⇒ ¬A)
(LAx 4) ¬¬A⇒ A

Additionally, we have a single deduction rule or rule of inference:

Deduction rule Modus Ponens

(MP)
A, A⇒ B

B
(from A and A⇒ B infer B)

Exercise. (a) Show that all the logical axioms are tautologies and explain their intuitive
meaning.
(b) Show that the inference rule Modus Ponens is correct in the following sense:

If I : VF(P )→ {0, 1} is any interpretation and A,B ∈ VF(P ) are propositional forms
such that I(A) = I(A⇒ B) = 1, then I(B) = 1, as well.

A proof in the theory T ⊆ VF(P ) is a finite sequence A0, A1, . . . , An of propositional
forms such that every item Ak is either a logical axiom, or a specific axiom of the theory
T (i.e. Ak ∈ T ), or it follows from the previous items by the rule (MP) (i.e., there are
i, j < k such that Aj has the form Ai ⇒ Ak).

A propositional form B is provable in a theory T if there is a proof A0, A1, . . . , An in
T such that its last item An coincides with B. In symbols, T ⊢ B. Instead of ∅ ⊢ B we
write just ⊢ B; it means that B is provable from the logical axioms, only.

Remark. The above axiomatization of Propositional Calculus is by far not the only
possible one. As already mentioned, an alternative axiomatization can be found in the
Appendix. Both of these axiomatizations contain infinitely many axioms (listed in form
of finitely many axiom schemes) and a single rule of inference. Such axiomatizations
are referred to as Hilbert style axiomatizations featured by “many” logical axioms and
“few” rules of inference. On the other hand, the Gentzen style axiomatizations contain
“many” rules of inference and just “few” logical axioms (or even none, replacing a logical
axiom A by the deduction rule A with meaning derive A out of nothing). In general,
Hilbert style axiomatizations are better suited for the description, study and analysis of
the formal logical system itself, while Gentzen style axiomatizations are more effective
in applications like logical programming or automatic theorem proving. However, as
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far as they serve as axiomatizations of the classical Propositional Calculus, they are all
equivalent in the sense that they produce the same family of provable forms.

Exercise. Show that, for any propositional forms A, B, the following propositional
forms are tautologies, and that they all are provable just from the logical axioms:
(a) A⇒ A
(b) A⇒ ¬¬A
(c) ¬A⇒ (A⇒ B)
(d) (¬B ⇒ ¬A)⇒ (A⇒ B)
(e) (A⇒ B)⇒ (¬B ⇒ ¬A)
(f) (A⇒ (¬B ⇒ ¬(A⇒ B)))
(g) (A⇒ B)⇒ ((¬A⇒ B)⇒ B)
(h) (¬A⇒ A)⇒ A

As an example (a rather deterring one) we just show that for every propositional form
A the form in (a) is provable from the logical axioms.

1. (A⇒ ((A⇒ A)⇒ A))⇒ ((A⇒ (A⇒ A))⇒ (A⇒ A))
(LAx 2), taking A for both A and C and A⇒ A for B

2. A⇒ ((A⇒ A)⇒ A)
(LAx 1), taking A for A and A⇒ A for B

3. (A⇒ (A⇒ A))⇒ (A⇒ A)
follows from 1. and 2. by (MP)

4. A⇒ (A⇒ A)
(LAx 1), taking A for both A and B

5. A⇒ A
follows from 3. and 4. by (MP)

Exercise. Sow that the axiom schemes (LAx 3) and (LAx 4) can be replaced by a single
axiom scheme

(LAx 5) (¬A⇒ B)⇒ ((¬A⇒ ¬B)⇒ A)

To this end show that every instance of the scheme (LAx 5) is provable from some
instances of the schemes (LAx 1), (LAx 2), (LAx 3), (LAx 4), and vice versa, all instances
of the schemes (LAx 3), (LAx 4) are provable from some instances of the schemes (LAx 1),
(LAx 2), (LAx 5).

The Soundness Theorem

Having introduced the axiomatization of Propositional Calculus we are facing the task
to establish that it is sound or correct in the following sense: For every theory T ⊆
VF(P ), all the propositional forms provable in T are satisfied in T . Otherwise it could
happen that for some propositional form B provable in T it would be possible to find an
interpretation I of T such that I(B) = 0. Such an I would represent a situation in which
all the axioms of T were satisfied, nevertheless, B were false. Thus we could be able
to prove false conclusions from the axioms of T which would be a disaster witnessing a
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collapse of our axiomatization. Therefore it is of crucial importance that we have the
following

Soundness Theorem. Let T ⊆ VF(P ) be a theory. Then, for every propositional
form B ∈ VF(P ), if T ⊢ B then T ⊨ B.
Demonstration. Let T ⊢ B and A0, A1, . . . , An be a proof of B in T . We will show that
I(Ak) = 1 for every interpretation I of the theory T and each k ≤ n. Then, of course,
I(B) = 1, since B is An. Each Ak is either a logical axiom, in which case I(Ak) = 1
for every interpretation I, or a specific axiom of T , in which case I(Ak) = 1 as I is an
interpretation of T , or Ak follows from some previous items Ai, Aj by (MP). Assuming
that we already have proved that I(Ai) = I(Aj) = 1, we can conclude I(Ak) = 1, too,
since, as we already have noted, the rule (MP) is correct.

Remark. Let us turn the reader’s attention to the fact that—however simple and
transparent the above argument might appear— it contains a kind of vicious circle. In
the demonstration of the Soundness Theorem we have been using logical deduction and
inference within the natural language extended by some fairly simple mathematical no-
tation. Thus we have used in an informal way the same logical means the soundness
of which we wanted to establish within the formalized Propositional Calculus. Strictly
speaking, the formal counterpart of the informal logical means we have been using goes
even beyond Propositional Calculus: since our arguments contain some quantification,
they interfere already with the Predicate Calculus. It is important to realize that we are
unable to prove the Soundness Theorem out of nothing, without assuming some minimal
logical fragment of natural language as granted. Thus what we have achieved is noth-
ing more and nothing less than the understanding and realization that our formalized
axiomatization of Propositional Calculus is in good accord with the logical structure of
deduction and inference within our natural language.

Later on we will also establish the converse of the Soundness Theorem.

Completeness Theorem. Let T ⊆ VF(P ) be a theory. Then, for every propositional
form B ∈ VF(P ), if T ⊨ B then T ⊢ B.

Remark. It is illuminating to compare the status of the Completeness Theorem with
that of the Soundness Theorem. As we have seen, the demonstration of the Soundness
Theorem was fairly simple. On the other hand, as we shall see later on, the demonstra-
tion of the Completeness Theorem will be considerably more involved. While the failure
of the Soundness Theorem would cause a collapse of our axiomatization of Propositional
Calculus, the consequences of a possible failure of the Completeness Theorem would be,
at least at first glance, less dramatic: It would just mean that our axiomatization of
Propositional Calculus is not powerful enough and we should look for some additional
logical axioms and/or deduction rules extending our original list in order to achieve
its completeness. Then, however, we would have to face a more delicate question: Is
it at all possible to achieve completeness in our axiomatization without destroying its
soundness? Namely, the Soundness Theorem and the Completeness Theorem together
answer this question affirmatively and guarantee that the relation between the syntax
and semantics of Propositional Calculus is carefully balanced.
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Later on, when dealing with an analogous issue for Predicate Calculus, we will quote
an example of its certain fairly natural fragment not admitting any axiomatization sat-
isfying both the Soundness and the Completeness Theorem.

The Deduction Theorem and Its Corollaries

On the way to the demonstration of the Completeness Theorem we are going to state
a handful of results which are of independent interest in their own right. In their
demonstrations we will use the notation A ≈ B, expressing that the characters A and
B denote the same propositional form. The symbol ≈ belongs to our metalanguage and
not to the language of Propositional Calculus itself, similarly as the symbols A, B, P ,
VF, I, ≡ , etc.

Deduction Theorem. Let T ⊆ VF(P ) be a theory and A,B ∈ VF(P ) be propositional
forms. Then T ⊢ A⇒ B if and only if T ∪ {A} ⊢ B.

Demonstration. Let T ⊢ A ⇒ B. Then the more T ∪ {A} ⊢ A ⇒ B. Obviously,
T ∪ {A} ⊢ A, from which we get T ∪ {A} ⊢ B by (MP). Namely, if C0, C1, . . . , Cn is a
proof of A⇒ B in T ∪ {A}, then C0, C1, . . . , Cn, A,B is a proof of B in T ∪ {A}.
Conversely, let T ∪ {A} ⊢ B. First we take care of the following two trivial cases:
(a) B is a logical axiom or B ∈ T . Then B, B ⇒ (A ⇒ B) (LAx 1), A ⇒ B is a proof
of A⇒ B in T .

(b) B ≈ A. Then ⊢ A⇒ A (Exercise (a)), hence the more T ⊢ A⇒ A.

Otherwise there must be a proof B0, B1, . . . , Bn of B in the theory T ∪ {A} such that
n ≥ 2 and Bn (i.e. B) follows from some previous items of this sequence by (MP).
We will proceed by induction according to n. To this end we assume that the needed
conclusion is valid for all proofs C0, C1, . . . , Cm in T ∪ {A}, where m < n. Let j, k < n
be such that Bj ≈ (Bk ⇒ Bn). Then both B0, . . . , Bj and B0, . . . , Bk are proofs in
T ∪ {A}. By the induction assumption we have T ⊢ A⇒ Bj , i.e., T ⊢ A⇒ (Bk ⇒ Bn),
as well as T ⊢ A⇒ Bk. Then

(A⇒ (Bk ⇒ Bn))⇒ ((A⇒ Bk)⇒ (A⇒ Bn))

is (LAx 2), and by (MP) we consecutively get

T ⊢ (A⇒ Bk)⇒ (A⇒ Bn)

T ⊢ A⇒ Bn

i.e., T ⊢ A⇒ B.

The reader should notice that it is the “harder” implication

If T ∪ {A} ⊢ B then T ⊢ A⇒ B

which is frequently used in mathematical proofs as well as in many deductive arguments
elsewhere. A typical direct proof of the implication A ⇒ B out of a list (theory) T
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of assumptions (axioms) starts with the “ritual” formulation: “Let A”, or “Assume
that A”. This is nothing else than extending the axiom list T by a new axiom A. We
continue by a sequence of statements C1, . . . , Cn formed according to some deductive
rules and finish once we succeed to arrive at the final term B. However, strictly speaking,
what we have produced that way is a proof of B within the theory T ∪ {A} and not
a proof of the implication A ⇒ B in T as we claim. The Deduction Theorem shows
that this natural method of argumentation is legitimate within Propositional Calculus,
justifying our claim.

Another way of proving a statement out of some list of assumptions is the proof by
contradiction. Instead of proving A in T directly, we produce a contradiction with the
axioms of T out of the negation of A. Also this method is legitimate in Propositional
Calculus.
A theory T is called contradictory or inconsistent if there exists some propositional

form A such that both T ⊢ A and T ⊢ ¬A. Otherwise, T is called consistent. From
the Exercise (c) it follows that every propositional form B is provable in an inconsistent
theory T .

Corollary on Proof by Contradiction. Let T ⊆ VF(P ) be a theory and A ∈ VF(P )
be a propositional form. Then T ⊢ A if and only if the theory T ∪{¬A} is contradictory
(inconsistent).

Demonstration. Let T ⊢ A. The more T ∪ {¬A} ⊢ A. Since, clearly, T ∪ {¬A} ⊢ ¬A,
the theory T ∪ {¬A} is contradictory.
Conversely, let the theory T ∪{¬A} be contradictory. Then every propositional form

is provable in this theory; in particular, T ∪ {¬A} ⊢ A. Then T ⊢ ¬A ⇒ A by the
Deduction Theorem. According to Exercise (h), ⊢ (¬A ⇒ A) ⇒ A, and the more
T ⊢ (¬A⇒ A)⇒ A. Using (MP) we get T ⊢ A.

Sometimes we are unable to find a proof of a statement B in a theory T , however, we
are able to prove B under some additional assumption A in one way, and in another way
under the opposite assumption ¬A. Then, all the same, it follows that B is provable in
T . This way of argumentation is legitimate in Propositional Calculus, as well.

Corollary on Proof by Distinct Cases. Let T ⊆ VF(P ) be a theory and A,B ∈
VF(P ) be propositional forms. Then T ∪ {A} ⊢ B and T ∪ {¬A} ⊢ B if and only if
T ⊢ B.

Demonstration. Assume that T ∪ {A} ⊢ B and T ∪ {¬A} ⊢ B. According to the
Deduction Theorem it follows T ⊢ A⇒ B and T ⊢ ¬A⇒ B. By Exercise (g) we have

⊢ (A⇒ B)⇒ ((¬A⇒ B)⇒ B)

and applying (MP) twice we get T ⊢ B.
Conversely, let T ⊢ B. Then, trivially, T ∪ {A} ⊢ B, as well as T ∪ {¬A} ⊢ B.

Exercise. Let T ⊆ VF(P ) be a theory and A1, . . . , An, B ∈ VF(P ) be propositional
forms such that T ⊢ A1 ∨ . . . ∨An. Show that T ⊢ B if and only T ∪ {Ai} ⊢ B for each
i = 1, . . . , n.
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The Completeness Theorem

We start with a technical lemma. Given any interpretation I : VF(P ) → {0, 1} and a
propositional form A ∈ VF(P ) we denote

AI ≈
{
A if I(A) = 1

¬A if I(A) = 0

In other words, AI is namely that member of the couple A, ¬A which is true in I, i.e.,
I(AI) = 1.

Lemma on Interpretation. [A. Church] Let p1, . . . , pn ∈ P and A ∈ VF(p1, . . . , pn).
Then for any interpretation I : VF(P )→ {0, 1} we have{

pI1, . . . , p
I
n

}
⊢ AI

Demonstration. By induction on complexity of A:

(a) If A ≈ p ∈ P , then the statement means that {p} ⊢ p, if I(p) = 1, or {¬p} ⊢ ¬p,
if I(p) = 0. In both cases we get the needed conclusion.

(b) Let A ≈ ¬B and our conclusion be true for B. Then B ∈ VF(p1, . . . , pn).
If I(A) = 1, then I(B) = 0 and AI ≈ A ≈ ¬B ≈ BI . By the assumption,{
pI1, . . . , p

I
n

}
⊢ BI , i.e.,

{
pI1, . . . , p

I
n

}
⊢ AI .

If I(A) = 0, then I(B) = 1, BI ≈ B and AI ≈ ¬A ≈ ¬¬B. By the assump-
tion

{
pI1, . . . , p

I
n

}
⊢ BI , i.e.,

{
pI1, . . . , p

I
n

}
⊢ B. According to Exercise (b) we have

⊢ B ⇒ ¬¬B, and by (MP) we get
{
pI1, . . . , p

I
n

}
⊢ ¬¬B, i.e.,

{
pI1, . . . , p

I
n

}
⊢ AI .

(c) Let A ≈ (B ⇒ C) and forB, C the conclusion is true. ThenB,C ∈ VF(p1, . . . , pn).
We distinguish three cases:

1. I(B) = 0. Then I(A) = I(B ⇒ C) = 1, i.e., AI ≈ A. Further, BI ≈ ¬B, hence,
by the induction assumption,

{
pI1, . . . , p

I
n

}
⊢ ¬B. According to Exercise (c) we have

⊢ ¬B ⇒ (B ⇒ C) and by (MP) we get
{
pI1, . . . , p

I
n

}
⊢ B ⇒ C, i.e.,

{
pI1, . . . , p

I
n

}
⊢ AI .

2. I(C) = 1. Then CI ≈ C and I(A) = I(B ⇒ C) = 1, hence AI ≈ A. By the
induction assumption,

{
pI1, . . . , p

I
n

}
⊢ C. (LAx 1) gives ⊢ C ⇒ (B ⇒ C), and by (MP)

we get
{
pI1, . . . , p

I
n

}
⊢ B ⇒ C, i.e.,

{
pI1, . . . , p

I
n

}
⊢ AI .

3. I(B) = 1, I(C) = 0. Then BI ≈ B, CI ≈ ¬C and I(A) = I(B ⇒ C) = 0, hence
AI ≈ ¬A. By the induction assumption,

{
pI1, . . . , p

I
n

}
⊢ B and

{
pI1, . . . , p

I
n

}
⊢ ¬C.

Exercise (f) gives ⊢ B ⇒ (¬C ⇒ ¬(B ⇒ C)). Using (MP) twice we get
{
pI1, . . . , p

I
n

}
⊢

¬(B ⇒ C), i.e.,
{
pI1, . . . , p

I
n

}
⊢ AI .

Exercise. Let Q = {p1, . . . , pn} ⊆ P be a finite set of propositional variables and
A ∈ VF(Q). Let

TE(A) =
{
I : Q→ {0, 1} : I(A) = 1

}
= {I1, . . . , Im}
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denote the set of all truth evaluations I on the set of propositional variables Q such that
A is true in I. Obviously, m ≤ 2n. For each I ∈ TE(A) we denote by

CI = p
I
1 ∧ . . . ∧ pIn

the elementary conjunction corresponding to I. Finally, we put

A′ = CI1 ∨ . . . ∨ CIm

Give reasons for the claim that A′ ∈ VF(Q) is a disjunctive normal form logically
equivalent to A (cf. Exercise. . .)

A special case of the Completeness Theorem deals with the provability of tautologies.

Completeness Theorem for Tautologies. [E. Post] For every propositional form
A ∈ VF(P ), we have ⊨ A if and only if ⊢ A; in other words, A is a tautology if and
only if A is provable just from the logical axioms.

Demonstration. We just show that every tautology is provable from the logical axioms;
the converse follows from the Soundness Theorem.
Let A ∈ VF(p1, . . . , pn). Since A is a tautology, I(A) = 1 and AI ≈ A for every truth

evaluation I : {p1, . . . , pn} → {0, 1}. By the Interpretation Lemma,

{
pI1, . . . , p

I
n

}
⊢ A

For any truth evaluation J : {p1, . . . , pn−1} → {0, 1}, both possibilities I1(pn) = 1,
I2(pn) = 0 jointly with the condition I1(pk) = I2(pk) = J(pk), for k < n, produce
interpretations I1, I2 : {p1, . . . , pn} → {0, 1}. Therefore, both

{
pJ1 . . . , p

J
n−1, pn

}
⊢ A{

pJ1 . . . , p
J
n−1,¬pn

}
⊢ A

According to Corollary on Proof by Distinct Cases this implies{
pJ1 , . . . , p

J
n−1

}
⊢ A

Repeating this procedure we finally get ⊢ A.

A theory T ⊆ VF(P ) is called complete if it is consistent and for every propositional
form A ∈ VF(P ) we have T ⊢ A or T ⊢ ¬A. In other words, T is complete if and only if
for every propositional form A exactly one of the two possibilities T ⊢ A, T ⊢ ¬A takes
place.
Next we show an alternative version of the Completeness Theorem.
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Completeness Theorem. [Alternative version] Every consistent theory T ⊆ VF(P )
has an interpretation.

The reader is asked to realize that also the other way round, if a theory has an
interpretation then it is necessarily consistent; in other words, a contradictory theory
has no interpretation. (This is the alternative version of the Soundness Theorem.)

Demonstration. Any interpretation I of a consistent theory T has to satisfy

I(A) =

{
1 if T ⊢ A
0 if T ⊢ ¬A

Since T is consistent, T ⊢ A and T ⊢ ¬A cannot happen at once for any A ∈ VF(P ).
On the other hand, unless T is complete, we cannot guarantee that we always have
either T ⊢ A or T ⊢ ¬A, i.e., the value I(A) need not be defined for every A ∈ VF(P ).
However, if T is complete then the above casework defines an interpretation of T , indeed.
In other words, a complete theory T has exactly one interpretation.
In the general case, since the set VF(P ) of all propositional forms is countable, it

allows for some enumeration VF(P ) = {A0, A1, . . . , An, . . . }. Now we define a sequence
of theories T0 ⊆ T1 ⊆ . . . ⊆ Tn ⊆ Tn+1 ⊆ . . . recursively:

T0 = T and Tn+1 =

{
Tn ∪ {An} if Tn ∪ {An} is consistent
Tn ∪ {¬An} if Tn ∪ {An} is contradictory

Obviously, Tn ⊆ Tn+1 for each n. Let us show by induction on n that every Tn is a
consistent theory. T0 = T is consistent by the initial assumption. Assuming that Tn is
consistent, Tn+1 could be inconsistent only in case that both the theories Tn ∪ {An},
Tn ∪ {¬An} were contradictory. By the Corollary on Proof by Contradiction this would
mean that both Tn ⊢ ¬An and Tn ⊢ An. However, this is impossible, as Tn is consistent.
Next we show that T̂ =

∪
n∈N Tn is a complete theory. It is easy to realize that T̂ is

consistent. Indeed, if T̂ were inconsistent then already some of the theories Tn would
inconsistent as well (this is left to the reader as an exercise— see also the proof of the
Compactness Theorem). It remains to show that, for each n, either T̂ ⊢ An or T̂ ⊢ ¬An.
This is equivalent to showing that T̂ ̸⊢ ¬An implies T̂ ⊢ An. If T̂ ̸⊢ ¬An then T̂ ∪ {An}
is consistent, and Tn ∪ {An} ⊆ T̂ ∪ {An} is consistent, as well. Then An ∈ Tn+1, hence
Tn+1 ⊢ An, and, since Tn+1 ⊆ T̂ , also T̂ ⊢ An.
Thus the unique interpretation I of the complete theory T̂ is an interpretation of T ,

as well.

Remark. The reader should notice that the above casework is not necessarily the only
way how the sequence of theories (Tn)n∈N extending T , leading to a complete theory
T̂ =

∪
Tn, and the interpretation I could be defined. In each step when neither Tn ⊢ An

nor Tn ⊢ ¬An, we are free to choose either Tn+1 = Tn ∪ {An} or Tn+1 = Tn ∪ {¬An}.
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Exercise. Let I : P → {0, 1} be any truth evaluation. Let us denote

Th(I) =
{
pI : p ∈ P

}
= {p ∈ P : I(p) = 1} ∪ {¬p : p ∈ P, I(p) = 0}

the theory of I. Demonstrate the following facts:
(a) Th(I) is a complete propositional theory.
(b) For any propositional form A ∈ VF(P ) the following conditions are equivalent:

(i) I(A) = 1
(ii) Th(I) ⊢ A
(iii) Th(I) ⊨ A
Now, we can prove the original form of the Completeness Theorem. We state it in a

way comprising the Soundness Theorem, as well.

Completeness Theorem. Let T ⊆ VF(P ) be a theory. Then, for every propositional
form B ∈ VF(P ), T ⊨ B if and only if T ⊢ B.

Demonstration. If T ⊢ B then T ⊨ B by the Soundness Theorem. To show the converse,
assume that T ⊨ B, nevertheless T ̸⊢ B. By the Theorem on Proof by Contradiction,
this means that the theory T ∪ {¬B} is consistent. Then, according to the Alternative
Version of the Completeness Theorem, T ∪ {¬B} has an interpretation I. Then I is
an interpretation of the theory T such that I(¬B) = 1, i.e., I(B) = 0. However, since
T ⊨ B, we have J(B) = 1 for every interpretation J of T ; in particular, I(B) = 1. This
contradiction proves that T ⊢ B.

Finally, let us record the following consequence of the Completeness Theorem.

Compactness Theorem. Let T ⊆ VF(P ) be a theory. Then T has an interpretation
if and only if every finite subtheory T0 of T has an interpretation.

Demonstration. By the Completeness Theorem, T has an interpretation if and only if
T is consistent. Similarly, every finite subtheory T0 ⊆ T has an interpretation if and
only if every finite subtheory T0 ⊆ T is consistent. Thus it is enough to realize that T
is consistent if and only if every finite subtheory T0 of T is consistent. Obviously, if T
is consistent then so are all its subtheories (and not just the finite ones). The other way
round, if T is inconsistent, then any proofs of some couple of contradicting propositional
forms B, ¬B in T involve just finitely many specific axioms of T . Putting them together
we obtain a finite subtheory T0 ⊆ T which is already contradictory.

We have formulated and proved the Compactness Theorem in Propositional Calculus
mainly with the aim to prepare the way for the Compactness Theorem in Predicate
Calculus to come later on. However, the Propositional Calculus version of the Compact-
ness Theorem lacks the importance and the plentitude of consequences of its Predicate
Calculus version.
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Appendix

Axiomatization of Propositional Calculus Using Four Logical Connectives

For completeness sake we include the axiomatization of Propostional Calculus using all
the usual logical connectives ¬, ∧, ∨ and ⇒; the remaining connective ⇔ is introduced
via the logical equivalence

A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A)

i.e., the left hand expression serves as the abbreviation for the right hand one. The
corresponding list of logical axioms consists of ten axiom schemes. The only inference
rule is Modus Ponens, again.

Logical axioms. (10 axiom schemes)
For any propositional formsA, B, C, the following propositional forms are logical axioms:

(LAx 1) A⇒ (B ⇒ A)
(LAx 2) (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))
(LAx 3) (A ∧B)⇒ A
(LAx 4) (A ∧B)⇒ B
(LAx 5) A⇒ (B ⇒ (A ∧B))
(LAx 6) A⇒ (A ∨B)
(LAx 7) B ⇒ (A ∨B)
(LAx 8) ((A⇒ C) ∧ (B ⇒ C))⇒ ((A ∨B)⇒ C))
(LAx 9) ((A⇒ B) ∧ (A⇒ ¬B))⇒ ¬A)
(LAx 10) A ∨ ¬A

Deduction rule Modus Ponens

(MP)
A, A⇒ B

B
(from A and A⇒ B infer B)

Exercise. Show that all the above logical axioms are tautologies and explain their
intuitive meaning.
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First Order Logic or Predicate Calculus

Compared to Propositional Calculus, in First Order Logic we relieve to some extent
the requirement to abstract from the content of particular statements and arguments
and to concentrate upon their form, only. Namely, we admit that all the statements
and arguments deal with some objects, that these objects have some properties or enter
some relations, that some objects are explicitly mentioned by their names and, finally,
that from given objects some new objects can be produced by means of certain oper-
ations. Though this shift of focus makes sense equally for natural languages as well
as for languages of scientific theories, we will restrict our attention to the languages
of mathematical theories exclusively, where such an approach is rather natural and its
fruitfulness can be demonstrated in a convincing way. On the other hand, the reduction
of the logical structure of natural languages as well as of the languages of most scientific
theories to its fragment fitting within the framework set by the First Order Logic would
turn out rather artificial.
First Order Logic, also called (Lower) Predicate Calculus, examines the structure

of arguments and proofs used in mathematics, more precisely in mathematical theories
describing classes of mathematical structures formed by sets of objects endowed with
various finitary operations and relations, singled out by certain axioms. That way First
Order Logic is mathematical logic both by its methods as well as by its subject.
We intend to develop and present the First Order Logic in a way parallel, as much

as possible, to our previous development and presentation of Propositional Calculus.
Consequently, the reader should see clearly both the similarities as well as the differences
between these two branches of mathematical logic.

First Order Languages and First Order Structures

A typical mathematical structure consists of a nonempty base set A of objects, equipped
with some finitary operations, some distinguished elements and some finitary relations.

Example. Number systems with operations of addition +, multiplication ·, distin-
guished elements 0 and 1 and (with the exception of complex numbers) the ordering
relation < form mathematical structures commonly denoted as follows:
Natural numbers (N; +, ·, 0, 1, <)
Integers (Z; +, ·, 0, 1, <)
Rational numbers (Q; +, ·, 0, 1, <)
Real numbers (R; +, ·, 0, 1, <)
Complex numbers (C; +, ·, 0, 1)

A first order language L = (F,C,R, ν) is given by some (maybe void) sets F , C, R
of functional (operation) symbols, constant symbols and relational (predicate) symbols,
respectively, together with an arity function (signature) ν : F ∪R→ N, assigning to any
symbol s ∈ F ∪ R its arity ν(s) ≥ 1. These are the specific symbols of L. Constant
symbols are sometimes considered as nullary functional symbols, i.e., as elements f of
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the set F subject to ν(f) = 0 (in that case the set C does not explicitly occur in the
description of L).
All first order languages contain common logical symbols:

• Object variables (or just variables): x, y, z, u, v, w, x0, x1, x2, . . . , y′, y′′, . . .
• Logical connectives: ¬ (not), ∧ (and), ∨ (or), ⇒ (if . . . then or implies),
⇔ (if and only if ) (two would suffice)

• Quantifiers: ∀ (universal quantifier), ∃ (existential quantifier) (one would suffice)
• Equality sign: =
• Auxiliary symbols: ( , ) (parentheses), , (comma) (they could be avoided)

Remark. At a glance it could seem that we should require the sets F , C, R to be at
most countable, since it makes no sense to admit that the language L contains uncount-
ably many specific symbols. Such a restriction, however, would bring us no technical
advantage. More important, as we shall see later on, e.g., when dealing with various
diagrams of structures, the methods and results of the study of uncountable languages
have applications even for structures of countable first order languages.

A first order structure, i.e., a structure of some first order language L = (F,C,R, ν),
briefly, an L-structure, A = (A; I) consists of a nonempty set A (base set or carrier)
and an interpretation I of the specific symbols of L in A:

• for f ∈ F , such that ν(f) = n, f I : An → A
(each n-ary operation symbol is interpreted as an n-ary operation on A)

• for c ∈ C, cI ∈ A
(each constant symbol is interpreted as some distinguished element of A)

• for r ∈ R, such that ν(r) = n, rI ⊆ An

(each n-ary relation symbol is interpreted as an n-ary relation on A)

Instead of sI we frequently write sA or just s for any specific symbol s.

Terms and Formulas

Terms of a first order language L, briefly L-terms, are composed of variables, constant
symbols and functional symbols of L. The set Term(L) of all L-terms is the smallest
set such that

1◦ x ∈ Term(L) for each variable x (every variable is a term);
2◦ c ∈ Term(L) for each c ∈ C (every constant symbol is a term);

3◦ if f ∈ F , ν(f) = n, and t1, . . . , tn ∈ Term(L), then f(t1, . . . , tn) ∈ Term(L)
(if f is an n-ary functional symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is a
term, as well).

This is a recursive definition. Terms in 1◦, 2◦, i.e., variables and constant symbols, are
called atomic terms. In order to prove that some set of L-terms contains all the L-terms,
it suffices to show that it fulfills all the three conditions 1◦, 2◦ and 3◦.
For a binary operation symbol f we usually write t1ft2 instead of f(t1, t2) in 3◦.
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Constant terms are terms containing no variables. If all the variables occurring in a
term t are contained in the list x1, . . . , xk, we write t(x1, . . . , xk). There is one exception:
writing t doesn’t necessarily mean that t is a constant term.
Given an L-structure A = (A; I) and a term t(x1, . . . , xk), the interpretation of t in

A is a k-ary operation tI : Ak → A defined on any k-tuple (a1, . . . , ak) ∈ Ak as follows:

1◦ if t is the variable xi where i ≤ k, then tI(a1, . . . , ak) = ai;

2◦ if t is a constant symbol c ∈ C, then tI(a1, . . . , ak) = cI ;

3◦ if t is of the form f(t1, . . . , tn) where f ∈ F , ν(f) = n, and the interpretations tIj
of the terms t1(x1, . . . , xk), . . . , tn(x1, . . . , xk) are already defined, then

tI(a1, . . . , ak) = f
I
(
tI1(a1, . . . , ak), . . . , t

I
n(a1, . . . , ak)

)
In particular, the interpretation of a constant term t is always an element tI ∈ A. Instead
of tI we frequently write tA or just t for any term t.

Formulas of a first order language L, briefly L-formulas are built of atomic formulas
by means of logical connectives and quantifiers. Atomic formulas of the language L are
expressions of the form t1 = t2 where t1, t2 are arbitrary L-terms, and r(t1, . . . , tn) where
r ∈ R is a relational symbol, ν(r) = n, and t1, . . . , tn are arbitrary L-terms (instead of
r(t1, t2) we frequently write t1 r t2). The set Form(L) of all L-terms is the smallest set
such that

1◦ if φ is an atomic formula then φ ∈ Form(L) (every atomic formula is a formula);
2◦ if φ,ψ ∈ Form(L) then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ⇒ ψ), (φ⇔ ψ) ∈ Form(L)
(if φ, ψ are L-formulas then so are ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ⇒ ψ), (φ⇔ ψ));

3◦ if φ ∈ Form(L) and x is a variable, then (∀x)φ, (∃x)φ ∈ Form(L)
(for any formula φ and variable x, the expressions (∀x)φ, (∃x)φ are formulas).

This is a recursive definition, again. In order to prove that some set of L-formulas
contains all the L-formulas, it suffices to show that it fulfills all the three conditions
1◦, 2◦ and 3◦.
Similarly as in Propositional Calculus, we tend to omit unnecessary parentheses.

On the other hand, in order to promote readability, we sometimes use parentheses not
required by the above definition. For instance, the modified expressions ¬(φ), (φ)∧ (ψ),
etc., could sometimes be better legible than the “rigorous” formulas ¬φ, φ ∧ ψ, etc.,
respectively. Atomic formulas of the form t1 = t2 are called identities. The conjunction
of two identities (t1 = t2) ∧ (t2 = t3) is frequently abbreviated to t1 = t2 = t3. Instead
of ¬(t1 = t2) we usually write t1 ̸= t2; ¬(t1 r t2) is sometimes abbreviated to t1 ̸ r t2.
Consecutive quantifications with the same quantifier (Qx1) . . . (Qxn) will be abbre-

viated to (Qx1, . . . , xn). For instance, we will write (∀x1, . . . , xn)(∃u, v)(∀ z)φ instead
of (∀x1) . . . (∀xn)(∃u)(∃ v)(∀ z)φ.
An occurrence of a variable x in a formula φ is simply any occurrence of the symbol

x in some of the atomic formulas out of which φ is built. Such an occurrence is called
bounded if it falls under the range of some quantifier, otherwise it is called free.
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Example. In the formula φ

(∀x)(x+ y = y + x) ∧ (∃ y)(∀u)(x ≤ y + z)

of the first order language containing a binary operation symbol + and a binary predicate
symbol ≤ both the occurrences of x in the atomic formula x + y = y + x are bounded
while its occurrence in x ≤ y+z is free, both the occurrences of y in the atomic formula
x + y = y + x are free, while its occurrence in x ≤ y + z is bounded, the occurrence of
z in the atomic formula x ≤ y + z is free, finally, the variable u has no occurrence in φ.

Sentences or closed formulas are L-formulas containing no free variables. If all the
variables occurring freely in a formula φ are contained in the list x1, . . . , xn, we write
φ(x1, . . . , xn). Exception: writing φ doesn’t necessarily mean that φ is a closed formula.

The satisfaction of an L-formula φ(x1, . . . , xn) by the elements a1, . . . , an ∈ A of some
L-structure A = (A; I) is denoted by A ⊨ φ(a1, . . . , an) and read as φ(a1, . . . , an) is
satisfied or true in A. It is defined recursively:

• if φ is t1 = t2, then A ⊨ φ(a1, . . . , an) if and only if tI1(a1, . . . , an) = tI2(a1, . . . , an)
• if φ is r(t1, . . . , tm), then A ⊨ φ(a1, . . . , an) if and only if(

tI1(a1, . . . , an), . . . , t
I
m(a1, . . . , an)

)
∈ rI

• if φ is ¬ψ, then A ⊨ φ(a1, . . . , an) if and only if it is not true that A ⊨ ψ(a1, . . . , an)
• if φ is ψ ∧ χ, then A ⊨ φ(a1, . . . , an) if and only if both
A ⊨ ψ(a1, . . . , an) and A ⊨ χ(a1, . . . , an)

• if φ is ψ ∨ χ, then A ⊨ φ(a1, . . . , an) if and only if
A ⊨ ψ(a1, . . . , an) or A ⊨ χ(a1, . . . , an) (in the nonexclusive meaning)

• if φ is ψ ⇒ χ, then A ⊨ φ(a1, . . . , an) if and only if
from A ⊨ ψ(a1, . . . , an) it follows that A ⊨ χ(a1, . . . , an)

• if φ is ψ ⇔ χ, then A ⊨ φ(a1, . . . , an) if and only if the conditions
A ⊨ ψ(a1, . . . , an) and A ⊨ χ(a1, . . . , an) are equivalent

• if φ is (∀x)ψ, then A ⊨ φ(a1, . . . , an) if and only if
A ⊨ ψ(a, a1, . . . , an) for every a ∈ A

• if φ is (∃x)ψ, then A ⊨ φ(a1, . . . , an) if and only if
A ⊨ ψ(a, a1, . . . , an) for some a ∈ A

The above list can be given an easier to survey and remember form rewriting it using
the same symbols for logical connectives, quantifiers and the relation of equality, both
in the first order language L we are dealing with, as well as in the common English
(which is a part of our metalanguage). In order to avoid the impending confusion, such
an attitude is usually introduced with the phrase “by abuse of notation”. The reader
should carefully inspect the rewritten version and identify the corresponding role of every
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particular occurrence of the logical symbols in the new list below:

A ⊨ (t1 = t2)(a1, . . . , an) ⇔ A ⊨ t1(a1, . . . , an) = t2(a1, . . . , an)
A ⊨ r(t1, . . . , tm)(a1, . . . , an) ⇔ A ⊨ r(t1(a1, . . . , an), . . . , tm(a1, . . . , an))

A ⊨ ¬φ(a1, . . . , an) ⇔ ¬(A ⊨ φ(a1, . . . , an)) ⇔ A ̸⊨ φ(a1, . . . , an)
A ⊨ (φ ∧ ψ)(a1, . . . , an) ⇔

(
A ⊨ φ(a1, . . . , an) ∧ A ⊨ ψ(a1, . . . , an)

)
A ⊨ (φ ∨ ψ)(a1, . . . , an) ⇔

(
A ⊨ φ(a1, . . . , an) ∨ A ⊨ ψ(a1, . . . , an)

)
A ⊨ (φ⇒ ψ)(a1, . . . , an) ⇔

(
A ⊨ φ(a1, . . . , an)⇒ A ⊨ ψ(a1, . . . , an)

)
A ⊨ (φ⇔ ψ)(a1, . . . , an) ⇔

(
A ⊨ φ(a1, . . . , an)⇔ A ⊨ ψ(a1, . . . , an)

)
A ⊨ (∀x)φ(x, a1, . . . , an) ⇔ (∀ a ∈ A)

(
A ⊨ φ(a, a1, . . . , an)

)
A ⊨ (∃x)φ(x, a1, . . . , an) ⇔ (∃ a ∈ A)

(
A ⊨ φ(a, a1, . . . , an)

)
For φ(x1, . . . , xn, y1, . . . , ym) and a1, . . . , an ∈ A we writeA ⊨ φ(a1, . . . , an, y1, . . . , ym)

if and only if A ⊨ φ(a1, . . . , an, b1, . . . , bm) for all b1, . . . , bm ∈ A, i.e., if and only if
A ⊨ (∀ y1, . . . , ym)φ(a1, . . . , an, y1, . . . , ym). In particular, A ⊨ φ(x1, . . . , xn) means that
A ⊨ φ(a1, . . . , an) for all a1, . . . , an ∈ A, i.e., A ⊨ (∀x1, . . . , xn)φ(x1, . . . , xn).

First Order Theories and Models

A first order theory T , i.e., a theory in a first order language L, is represented by and
identified with the set of its specific axioms T ⊆ Form(L). An L-structure A is said to
satisfy the theory T or to be a model of T if A satisfies all the axioms of T . We write
A ⊨ T ; thus we have

A ⊨ T if and only if A ⊨ φ for every φ ∈ T

We say that a formula ψ is a logical consequence (of the axioms) of the first order theory
T , or that ψ is true in T if ψ is true in every model A of the theory T . In that case we
write T ⊨ ψ. Thus we have

T ⊨ ψ if and only A ⊨ ψ for every model A ⊨ T

Our goal is to describe the semantic notion of truth or satisfaction or logical conse-
quence in terms of the syntactic notion of provability. This will take part in the next
section. However, before turning our attention to that point, it is desirable to get some
acquaintance with a handful of important examples of first order theories and their
models.
Preliminarily, we can divide first order theories into the following two categories:

(a) First order theories describing a variety of different structures sharing the same
first order language and singled out by some common properties formulated as axioms
of the corresponding theory. Some subclasses of the class of all models of that theory
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can be described in terms of some additional axioms, as well as by some properties not
formulated in terms of that first order language. From the theories listed bellow the
Theory of Groups, various Theories of Rings and Fields, Vector Spaces, Theories of
Order, Boolean Algebras and the Theories of Ordered Rings and Fields belong to this
family.

(b) First order theories attempting to describe a single mathematical structure “as
completely as possible”. As we shall see later on, such attempts are unattainable, except
for some trivial cases. Our first example of this kind is furnished by Peano Arithmetic,
aiming to fully describe the structure of all natural numbers with the addition and
multiplication. The second example includes the Zermelo-Fraenkel Set Theory with the
Axiom of Choice (in a not quite precisely delineated version) which should grasp the
Universe of Sets.

Groups. The Theory of Groups or Group Theory has several alternative axiomatiza-
tions in slightly differing first order languages. A group is simply a model of Group
Theory.
(a) In the first order language containing a binary operation symbol · (multiplication),

a constant symbol e (unit or neutral element) and a unary operation symbol −1 (taking
inverses), the axioms of the Theory of Groups are formed by the following identities:

x · (y · z) = (x · y) · z
x · e = x = e · x

x · x−1 = e = x−1 · x

expressing the associativity of the multiplication and the facts that e is its unit element
and that x−1 is the inverse element of x. Then groups are structures

(
G; ·, e,−1

)
satisfying the just stated axioms.
A group is called commutative or abelian if it satisfies the commutative law x·y = y·x.

Group Theory is sometimes, especially in the abelian case, formulated in the language
using the binary operation symbol + (addition), the constant symbol 0 (zero) and the
unary operation symbol − (minus, the inverse element −x is called the opposite element
to x).

(b) Omitting the unary operation symbol −1 from the language of Group Theory,
the last axiom, expressing the existence of inverse elements, has to be formulated in a
slightly more complicated way

(∀x)(∃ y)(x · y = e = y · x)

Then groups are considered as structures (G; ·, e) satisfying the corresponding three
axioms.

(c) In the language containing just the symbol of multiplication, the axioms expressing
the existence of the unit element and of the inverse elements are merged into a single
more complex axiom

(∃u)(∀x)
(
x · u = x = u · x ∧ (∃ y)(x · y = u = y · x)

)
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Another possibility is represented by the axiom

(∀x)(∃ y)(∀ z)
(
z · (x · y) = z = (y · x) · z

)
Then a group is a structure (G; ·) satisfying the associative law and one (hence both)
of the last two axioms.

It is clear that a group
(
G; ·, e,−1

)
in the sense of (a) can be made a group in the

sense of (b) or (c) by omitting the interpretations of the superfluous symbols. The other
way round, for Group Theory in the sense of (c) one can extend its language by the
missing symbols and define the unit element and the inverse element operation by

u = e ⇔ (∀x)(x · u = x = u · x)
y = x−1 ⇔ x · y = e = y · x

respectively. Then a group (G; ·) in the sense of (c) becomes a group in the sense of (b)
or (a).
Some examples of commutative groups (in the language with a single binary opera-

tion) are the additive groups (Z; +) of integers, (Zn; +) of remainders modulo n ≥ 2,
of rationals (Q; +), etc. Some examples of noncommutative groups are provided by
the structures (S(X); ◦) of all bijective maps (permutations) of any set X with more
than two elements into itself and the operation of composition, or by the structures
(GL(n,R); ·) of all invertible real n×n matrices, for n ≥ 2, with the operation of matrix
multiplication.

Rings and Fields. (a) The Theory of Rings or Ring Theory is formulated in the lan-
guage with two binary operation symbols + (addition), · (multiplication) and a constant
symbol 0 (zero). Then a ring is a structure (A; +, ·, 0) satisfying the axioms of Ring
Theory. The axioms express that (A; +, 0) is an abelian group, the associative law for
multiplication and two distributive laws

x · (y + z) = (x · y) + (x · z) (x+ y) · z = (x · z) + (y · z)

usually written simply as x(y + z) = xy + xz and (x + y)z = xz + yz. Models of Ring
Theory are called rings.
A ring is called commutative if it satisfies the commutative law for multiplication

x · y = y · x. A commutative ring is called an integral domain if satisfies the axiom

xy = 0 ⇒ (x = 0 ∨ y = 0)

(b) TheTheory of Rings with Unit or the Theory of Unitary Rings is formulated in
the language obtained by extending the language of Ring Theory by a new constant
symbol 1, denoting the unit of multiplication and adding the identities x · 1 = x = 1 · x
to the axioms of Ring Theory.

(c) The Theory of Fields is obtained from the Theory of Commutative Rings with
Unit by adding to it the axiom 0 ̸= 1 and the axiom

(∀x)(x ̸= 0 ⇒ (∃ y)(x · y = 1))
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stating the existence of multiplicative inverses for all nonzero elements. A field is simply
a model of the Theory of Fields.

(d) The Theory of Division Rings is obtained from the Theory of Unitary Rings by
extending it by the condition 0 ̸= 1 and the axiom of inverses

(∀x)(x ̸= 0 ⇒ (∃ y)(x · y = 1 = y · x))

A division ring is simply a model of this theory.

Even integers form a commutative ring (2Z; +, ·, 0) without unit. The integers and
the remainders modulo n ≥ 2 form commutative rings with unit (Z; +, ·, 0, 1) and
(Zn; +, ·, 0, 1), respectively. Examples of noncommutative rings with unit are provided
by the structures

(
Rn×n; +, ·, 0, I

)
of all real n×n matrices, for n ≥ 2, with operations of

addition and multiplication of matrices, the zero matrix 0 and the unit matrix I. Exam-
ples of fields are the structures (Q; +, ·, 0, 1), (R; +, ·, 0, 1), (C; +, ·, 0, 1) of rational, real
and complex numbers, respectively, as well as the structures (Zp; +, ·, 0, 1) of remainders
modulo any prime number p. Clearly, every field is an integral domain; however, the
integers (Z; +, ·, 0, 1) form an integral domain which is not a field. An example of a non
commutative division ring, i.e., a division ring which is not a field, is provided by the
quaternions (H; +, ·, 0, 1). Quaternions represent a four dimensional version of complex
numbers, i.e., they are numbers of the form q0 + q1 i +q1 j +q3 k, where q0, q1, q2, q3 ∈ R
and i, j, k are three imaginary units, satisfying i2 = j2 = k2 = i j k = −1. The equality
and addition of quaternions are defined componentwise, while their multiplication is
defined in the only possible way extending the above relations between the generators
i, j, k enforced by the axioms of unitary rings.

(e) A field (F ; +, ·, 0, 1) is called algebraically closed if it satisfies the infinite list of
axioms

(∀u1, . . . , un)(∃x)
(
xn + u1x

n−1 + · · ·+ un−1x+ un = 0
)

postulating the existence of roots of all polynomials of any degree n ≥ 2 with coefficients
from F . The field (C; +, ·, 0, 1) of all complex numbers and the field (A; +, ·, 0, 1) of all
algebraic numbers (i.e., the roots of polynomials with rational coefficients) are examples
of algebraically closed fields.

(f) A field (F ; +, ·, 0, 1) is called formally real if it satisfies the infinite list of axioms

x21 + · · ·+ x2n = 0 ⇒ x1 = . . . = xn = 0

for every positive n ∈ N, requiring that a sum of squares of nonzero elements is never 0.
The Theory of Real Closed Fields is the extension of the Theory of Formally Real Fields
by the axiom

(∀x)(∃ y)
(
y2 = x ∨ y2 = −x

)
postulating the existence of the square root of either x or −x for any x, as well as the
infinite list of axioms

(∀u1, . . . , un)(∃x)
(
xn + u1x

n−1 + · · ·+ un−1x+ un = 0
)
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guaranteeing the existence of at least one root for every polynomial of any odd degree
n ≥ 3 with coefficients from F . The field (R; +, ·, 0, 1) of all real numbers and the field
(R ∩ A; +, ·, 0, 1) of all real algebraic numbers are examples of real closed fields. The
field (Q; +, ·, 0, 1) of all rational numbers is formally real but not real closed.

The following, though rather familiar example is worthwhile to notice since it shows
that the sets of functional or relational symbols of a first order language may themselves
carry their own first order structure.

Vector spaces over a field. For a fixed field (F ; +, ·, 0, 1) we introduce the first order
language L(F ) which has no relational symbols, a single constant symbol 0, a binary
operation symbol + and the set F of unary operation symbols. A typical structure of
the language L(F ) is denoted as V = (V ;F,+,0); the elements of the set V are called
vectors. The elements f ∈ F in role of unary operation symbols are referred to as scalars;
instead of f(x) we usually write just fx and this result is referred as the scalar multiple
of x by f . Vector spaces over the field F are structures V = (V ;F,+,0) of the language
L(F ) satisfying the axioms expressing that (V ; +,0) is an abelian group, as well as the
axioms

1x = x

f(x+ y) = fx+ fy

(fg)x = f(gx)

(f + g)x = fx+ gx

for any scalars f, g ∈ F . The reader should realize that the last three equalities are in
fact axiom schemes and not single axioms.

Theories of Order. The Theory of Partial Order is formulated alternatively in the
first order language with a single binary relational symbol < (strict partial order) or ≤
(non-strict partial order). The strict version is given by the axioms

¬(x < x) ¬(x < y ∧ y < x) (x < y ∧ y < z) ⇒ x < z

The non-strict (and more frequently used version) has the axioms

x ≤ x (x ≤ y ∧ y ≤ x) ⇒ x = y (x ≤ y ∧ y ≤ z) ⇒ x ≤ z

A partially ordered set (poset) is simply a model (P ; <) or (P ; ≤) of the corresponding
version of the theory.
Obviously, a poset (P ; <) can be converted into a poset (P ; ≤) defining the non-strict

partial order by
x ≤ y ⇔ x < y ∨ x = y

Vice versa, a poset (P ; ≤) can be made to a poset (P ; <) defining the strict partial
order by

x < y ⇔ x ≤ y ∧ x ̸= y
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The reader should be able to switch between the two versions anytime.
The Theory of Ordered Sets, sometimes called also the Theory of Total Order or the

Theory of Linear Order, is obtained by adding the trichotomy axiom

x < y ∨ x = y ∨ y < x

or the dichotomy axiom
x ≤ y ∨ y ≤ x

respectively, to the corresponding version of the Theory of Partial Order.

Boolean Algebras. The language of the Theory Boolean Algebras has two binary op-
eration symbols ∧ (meet), ∨ (join), one unary operation symbol ′ (complement) and
two constant symbols 0 and 1. This violates the implicit convention that the specific
symbols of any first order language should be clearly distinguished from its logical sym-
bols. However, since all the axioms of the Theory of Boolean Algebras are identities
and do not contain any logical connectives, there is no danger of confusion. On the
other hand, this notation points to the familiar connection between Boolean algebras
and Propositional Calculus. A Boolean algebra B = (B; ∧,∨, ′, 0, 1) is simply a model
of the theory with the following axioms:

x ∧ y = y ∧ x x ∨ y = y ∨ x (commutative laws)

x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∨ (y ∨ z) = (x ∨ y) ∨ z (associative laws)

x ∧ x = x x ∨ x = x (idempotent laws)

x ∧ (x ∨ y) = x x ∨ (x ∧ y) = x (absorbtion laws)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (distributive laws)
(x ∧ y)′ = x′ ∨ y′ (x ∨ y)′ = x′ ∧ y′ (de Morgan laws)

x ∧ 0 = 0 x ∨ 0 = x (laws of 0)

x ∧ 1 = x x ∨ 1 = 1 (laws of 1)

x ∧ x′ = 0 x ∨ x′ = 1 (laws of complement)

This axiom list is redundant: some of its items can be derived as consequences of the
remaining ones. A partial order on every Boolean algebra can be introduced via any of
the following two equivalent conditions:

x ≤ y ⇔ x = x ∧ y ⇔ x ∨ y = y

Then 0 and 1 become the smallest and the biggest element, respectively, with respect
to this order in B.
The typical examples of Boolean algebras are formed by the power sets of any sets.

More precisely, for every set I its power set P(I) = {X : X ⊆ I} with the operations of
set-theoretical intersection, union and complement with respect to the set I, the empty
set ∅ as 0 and the whole set I as 1, gives rise to the Boolean algebra (P(I); ∩,∪, ′, ∅, I).
The order relation X ≤ Y in P(I) coincides with the set-theoretical inclusion X ⊆ Y .



31

Another example of a Boolean algebra can be obtained from the set VF(P ) of all
propositional forms over any set of propositional variables P ̸= ∅ interpreting the equal-
ity relation as the relation of logical equivalence A ≡ B, with logical connectives ∧, ∨
and ¬ in the role of the Boolean operations of meet, join and complement, respectively,
and with any tautology in the role of 1 and any contradiction in the role of 0.

Exercise. (a) Show that both the conditions defining the relation of partial order ≤ on
Boolean algebras are indeed equivalent, and that ≤ defined that way is indeed a (non
strict) partial order.
(b) Show that the meet x ∧ y is the infimum and the join x ∨ y is the supremum of

the set {x, y} with respect to the partial order ≤ , respectively. This is to say that for
any z we have z ≤ x and z ≤ y if and only if z ≤ x ∧ y, and, similarly, x ≤ z and y ≤ z
if and only if x ∨ y ≤ z.
(c) Prove the law of double complement x′′ = x, as well as the identities 0′ = 1, 1′ = 0

from the axioms of Boolean algebras.

Ordered Rings and Fields. The Theory of Ordered Rings is obtained by extending
the language of Ring Theory by the binary relational symbol < and adding to its axioms
the strict version of the axioms of (total) order, as well as the axioms

x < y ⇒ x+ z < y + z

(x < y ∧ 0 < z) ⇒ (xz < yz ∧ zx < zy)

expressing that the operations of the addition of any element z as well as the multipli-
cation by any positive element z are increasing.
The same procedure applies to the Theory of Unitary Rings, the Theory of Com-

mutative Rings, the Theory of Fields, etc., yielding the Theory Ordered Unitary Rings,
the Theory of Ordered Commutative Rings, the Theory of Ordered Fields, etc., respec-
tively. The integers (Z; +, ·, 0, 1, <) provide a representative (and minimal) example of
an ordered commutative ring with unit. The rationals (Q; +, ·, 0, 1, <) and the reals
(R; +, ·, 0, 1, <) form ordered fields. It can be proved that neither the field of complex
numbers (C; +, ·, 0, 1) nor any finite field, e.g., the fields (Zp; +, ·, 0, 1) of remainders
modulo a prime p, can be turned into an ordered field by any ordering relation < .
An ordered field (F ; +, ·, 0, 1, <) is called real closed if it is a formally real field

satisfying the condition
x ≥ 0 ⇒ (∃ z)

(
x = z2

)
and the infinite list of conditions stating that every polynomial of odd degree n ≥ 3 with
coefficients from F has at least one root in F , similarly as in the case of (unordered) real
closed fields. The Theory of Ordered Real Closed Fields is obtained as the extension of
the Theory of Ordered Fields by these axioms. It can be easily verified that every real
closed field (F ; +, ·, 0, 1) can be turned into an ordered field (F ; +, ·, 0, 1, <) by defining
the (nonstrict) order relation on it as follows:

x ≤ y ⇔ (∃ z)
(
y = x+ z2

)
The other way round, for every ordered real closed field (F ; +, ·, 0, 1, <), its reduct
(F ; +, ·, 0, 1), obtained by omitting the order relation < is a real closed field.
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Peano Arithmetic. Peano Arithmetic PA is the most common first order theory de-
scribing the structure of natural numbers. In logical texts it is usually formulated in
the first order language with a unary operation symbol S (successor operation, i.e.,
adding 1), two binary operations of addition + and multiplication ·, and a constant
symbol 0. However, we find it more convenient to replace the successor symbol S by the
constant symbol 1; that way our formulation of PA will use the familiar language of the
Theory of Unitary Rings (then the successor operation can be defined by S(x) = x+1).
The axioms of PA can be divided into four groups. The first group consists of three

axioms for the successor operation (the left column), the second group is in fact the
recursive definition of addition in terms of successor (the middle column), and the third
group is the recursive definition of multiplication in terms of addition (the right column):

0 + 1 = 1 x+ 0 = x x · 0 = 0
0 ̸= x+ 1 x+ (y + 1) = (x+ y) + 1 x · (y + 1) = (x · y) + x
x+ 1 = y + 1 ⇒ x = y

The fourth group consists of infinitely many axioms comprised in the Scheme of Induc-
tion (

φ(0, u⃗) ∧ (∀x)(φ(x, u⃗) ⇒ φ(x+ 1, u⃗))
)

⇒ (∀x)φ(x, u⃗)

where φ(x, u1, . . . , un) is any formula in the language of PA, abbreviated to φ(x, u⃗).
The language of PA is usually extended by the ordering symbol ≤ defined by

x ≤ y ⇔ (∃ z)(y = x+ z)

and the axioms of PA imply that this is a (non-strict) linear order. Then the Scheme of
Induction can be equivalently expressed in form of the Well Ordering Principle

(∃x)ψ(x, u⃗) ⇒ (∃x)
(
ψ(x, u⃗) ∧ (∀ y)(ψ(y, u⃗) ⇒ x ≤ y)

)
for any formula ψ(x, u⃗) in the language of PA. Informally, this principle expresses the
condition that every nonempty set of the form {x : ψ(x, u⃗)} has the least element.
The “usual” natural numbers form the so called standard model (N; +, ·, 0, 1) of PA.

Every element n ∈ N is the interpretation of some constant term in the language of PA.
The canonical representatives of particular natural numbers are defined recursively as
follows:

1◦ The natural number 0 coincides with the constant symbol 0.
2◦ If the natural number n coincides with the constant term t, then the natural number

n+ 1 coincides with the constant term t+ 1.

By abuse of notation we can write 0 = 0, 1 = 0+1, 2 = (0+1)+1, 3 = ((0+1)+1)+1,
. . . , n = (. . . ((0 + 1) + 1) · · · + 1) + 1 (with n instances of 1), etc. Thus the natural
number n is represented by the constant term obtained as the nth iterate of the successor
operation applied to the constant symbol 0.
Later on we shall see that PA has some nonstandard models, as well.
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Set Theory. Most versions of the Set Theory are formulated in the first order language
with a single binary relational symbol ∈ denoting the membership relation. The formula
x ∈ X means that x is an element of X or that x belongs to the set X. The common
core of these versions consists of the following four axioms:

X = Y ⇔ (∀ z)(z ∈ X ⇔ z ∈ Y )

(∀x, y)(∃Z)(∀ z)(z ∈ Z ⇔ (z = x ∨ z = y))

(∀X)(∃U)(∀u)(u ∈ U ⇔ (∃x ∈ X)(u ∈ x))

(∀X)(∃Y )(∀ y)(y ∈ Y ⇔ (∀x)(x ∈ y ⇒ x ∈ X))

called the Axiom of Extensionality, the Axiom of Pair, the Axiom of Union and the
Power Set Axiom, respectively, and of the following infinite list of axioms

(∀X)(∃Y )(∀x)
(
x ∈ Y ⇔ (x ∈ X ∧ φ(x, u⃗))

)
for any set-theoretical formula φ(x, u1, . . . , un), called the Scheme of Comprehension.
The Axiom of Extensionality states that two sets X and Y are equal if and only if

they contain the same elements. The Axiom of Pair postulates the existence of the set

Z = {x, y} = {z : z = x ∨ z = y}

for any pair of elements x, y. The Axiom of Union guarantees the existence of the union

U =
∪
X = {u : (∃x ∈ X)(u ∈ x)}

of all the sets x from a given set X. The Power Set Axiom postulates the existence of
the power set (i.e., the set of all subsets)

Y = P(X) = {y : y ⊆ X} = {y : (∀x)(x ∈ y ⇒ x ∈ X)}

of any set X. Finally, the Scheme of Comprehension guarantees the possibility to single
out every subset of the form

Y = {x ∈ X : φ(x, u⃗)} = {x : x ∈ X ∧ φ(x, u⃗)}

from a given set X by means of any set-theoretical formula φ(x, u1, . . . , un).
The Zermelo-Fraenkel Set Theory ZF is obtained by adding to this list the Axiom

of Foundation, the Axiom of Infinity and the Scheme of Replacement. The Zermelo-
Fraenkel Set Theory with Choice ZFC, which is the most common version of Set Theory
used in modern mathematics, is obtained from ZF by adding to it the Axiom of Choice
(AC). We do not include the formulation of these higher axioms of Set Theory into our
elementary text. Let us just confine to the following four informal formulations: The
Axiom of Foundation states that every set of sets contains as an element a set disjoint
from this set. The Axiom of Infinity postulates the existence of an infinite set. The
Scheme of Replacement generalizes the Scheme of Comprehension by guaranteeing even
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the sethood of certain images of subsets of a given set defined by set-theoretical formulas.
Finally, the Axiom of Choice guarantees, for every set X of pairwise disjoint nonempty
sets, the existence of a set containing exactly one element from each of the sets x ∈ X.

Axiomatization of First Order Logic and the Soundness Theorem

Similarly to Propositional Calculus, we prefer to have a brief and concise axiomatization
of First Order Logic. Therefore we will proceed as if the set Form(L) of all formulas
of any first order language L were built of the atomic formulas by means of the logical
connectives ¬ and ⇒, and the universal quantifier ∀ , only. By φ ≈ ψ we express that
the characters φ and ψ denote the same formula. Again, the symbol ≈ does not belong
to our first order language, similarly as the symbols φ, ψ, χ, L, etc. They are symbols
of our metalanguage by means of which we describe Predicate Calculus.
The remaining logical connectives and the existential quantifier can be introduced as

the abbreviations

(φ ∧ ψ) ≈ ¬(φ⇒ ¬ψ),
(φ ∨ ψ) ≈ (¬φ⇒ ψ),

(φ⇔ ψ) ≈ (φ⇒ ψ) ∧ (ψ ⇒ φ),

(∃x)φ ≈ ¬(∀x)¬φ.

Logical axioms of Predicate Calculus are divided into three groups: propositional
axioms, quantifier axioms and axioms of equality.

Propositional axioms. (4 axiom schemes)
For any formulas φ, ψ, χ the following formulas are axioms:
(PrAx 1) φ⇒ (ψ ⇒ φ)
(PrAx 2) (φ⇒ (ψ ⇒ χ))⇒ ((φ⇒ ψ)⇒ (φ⇒ χ))
(PrAx 3) (φ⇒ ψ)⇒ ((φ⇒ ¬ψ)⇒ ¬φ)
(PrAx 4) ¬¬φ⇒ φ

If φ is a formula and t is a term, then φ(t/x) denotes the formula obtained by
the substitution of the term t for the variable x. It means that every free occurrence
of the variable x in φ is replaced by t. Similarly we can introduce multiple substitu-
tions φ(t1/x1, . . . , tn/xn). If there’s no danger of confusion then we write just φ(t) and
φ(t1, . . . , tn).
The substitution of t for x in φ is admissible if no variable of the term t falls under

the range of some quantifier in φ after substituting t for x in φ. Informally this means
that “φ(t/x) is telling of t the same thing as φ is telling of x”.

Example. Within the integers the formula φ(x) ≈ (∃ y)(x = y + y) tells that x is an
even number. If t is the term u+x then φ(t/x) is the formula (∃ y)(u+x = y+y), telling
that u + x is even; this is an admissible substitution. If t is the term y then φ(t/x) is
the sentence (∃ y)(y = y + y) expressing the (true) fact that the equation y = y + y has
some solution; this substitution is not admissible.
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Quantifier axioms. (2 axiom schemes)
For any formulas φ, ψ and any term t the following formulas are axioms:

(QAx 1) (∀x)(φ⇒ ψ)⇒ (φ⇒ (∀x)ψ)
(whenever the variable x has no free occurrence in φ)

(QAx 2) (∀x)φ⇒ φ(t/x)
(whenever the substitution of t for x in φ is admissible)

Axioms of equality. (3 axioms + 2 axiom schemes)
For any n-ary functional symbol f and any n-ary relational symbol r the following
formulas are axioms:

(EAx 1) x = x
(EAx 2) x = y ⇒ y = x
(EAx 3) x = y ⇒ (y = z ⇒ x = z)
(EAx 4) x1 = y1 ⇒ (. . .⇒ (xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)) . . . )
(EAx 5) x1 = y1 ⇒ (. . .⇒ (xn = yn ⇒ r(x1, . . . , xn)⇒ r(y1, . . . , yn)) . . . )

Deduction rules. Modus Ponens (MP) and Rule of Generalization (Gen)

(MP)
φ, φ⇒ ψ

ψ
(from φ and φ⇒ ψ infer ψ)

(Gen)
φ

(∀x)φ
(from φ infer (∀x)φ)

Exercise 1. (a) Show that all the logical axioms are satisfied in every L-structure A.
(b) Show that the deduction rule Modus Ponens is correct in the following sense: For
every L-structure A and any L-formulas φ, ψ, if A ⊨ φ and A ⊨ φ⇒ ψ then A ⊨ ψ.
(c) Show that the Rule of Generalization is correct in the following sense: For every
L-structure A and any L-formula φ, if A ⊨ φ then A ⊨ (∀x)φ for any variable x, no
matter whether x is free in φ or not.

A proof in a first order theory T is a finite sequence φ0, φ1, . . . , φn of formulas such
that every item φk is either a logical axiom, or a specific axiom of the theory T (i.e.,
φk ∈ T ), or it follows from the previous items by modus ponens (MP) (i.e., there are
i, j < k such that φj has the form φi ⇒ φk) or by the rule of generalization (Gen) (i.e.,
there is a j < k such that φk has the form (∀x)φj for some variable x).
A formula ψ is provable in a theory T if there is a proof φ0, φ1, . . . , φn in T such that

its last item φn coincides with ψ. In symbols, T ⊢ ψ. Instead of ∅ ⊢ ψ we write just
⊢ ψ; it means that ψ is provable from the logical axioms, only.

Exercise 2. Show that the following first order schemes are provable just from the
logical axioms:

(a) all propositional tautologies
(b) φ(t/x)⇒ (∃x)φ (if the substitution t/x in φ is admissible)
(c) (x1 = y1 ∧ . . . ∧ xn = yn)⇒ t(x1, . . . , xn) = t(y1, . . . , yn) (for any term t)
(d) (x1 = y1 ∧ . . . ∧ xn = yn)⇒ (φ(x1, . . . , xn)⇔ φ(y1, . . . , yn))

(for any formula φ such that all the substitutions yi/xi, in φ are admissible)
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Soundness Theorem. Let T be a theory in a first order language L. Then, for every
L-formula ψ, if T ⊢ ψ then T ⊨ ψ.

Demonstration. Let T ⊢ ψ and φ0, φ1, . . . , φn be a proof of ψ in T . We will show
that A ⊨ φk, for any model A ⊨ T of the theory T and each k ≤ n. Then, of course,
A ⊨ ψ, since ψ is φn. Each φk is either a logical axiom, in which case A ⊨ φk for
every L-structure A, or a specific axiom of T , in which case A ⊨ φk as A ⊨ T , or φk
follows from some previous proof items by (MP) or by (Gen). In the (MP) case there
are i, j < k such that φj has the form φi ⇒ φk. Now, for any L-structure A, assuming
that we already have A ⊨ φi and A ⊨ φj , i.e., A ⊨ φi ⇒ φk, we can conclude A ⊨ φk.
In the (Gen) case there is a j < k such that φk has the form (∀x)φi. Again, for any
L-structure A, assuming that we already have A ⊨ φj , we can conclude A ⊨ (∀x)φj ,
i.e., A ⊨ φk. (Cf. Exercise 1.)

Later on we will also establish the converse of the Soundness Theorem.

Completeness Theorem. Let T be a theory in a first order language L. Then, for
every L-formula ψ, if T ⊨ ψ then T ⊢ ψ.

At this moment, the reader should return to the remarks following the demonstration
of the Soundness Theorem and the first formulation of the Completeness Theorem in
Propositional Calculus and realize that they equally apply to their first order versions.
As it follows from the following example, the fine balance between the syntax and

semantics which we have both in the Propositional as well as in the First Order Logic
is no way self-evident or automatic.

Example. (Finite Model Semantics) Let L be a first order language. For any theory
T in L and any L-formula φ we define the finite satisfaction relation T ⊨fin φ if T ⊨ A
for every finite model A of the theory T , i.e., if and only if φ is satisfied in every finite
model of the theory T . By methods going beyond the scope of our elementary course it
can be shown that this Finite Model Semantics cannot be axiomatized in a way enabling
to establish both the corresponding versions of the Soundness Theorem and of the Com-
pleteness Theorem. More precisely, for any sound axiomatization, consisting of finitely
many axiom schemes and finitely many rules of inference, the resulting provability re-
lation T ⊢fin φ does not exhaust the finite satisfaction relation T ⊨fin φ. This is to say
that it is possible to find a theory T and a sentence φ such that T ⊨fin φ, nevertheless
T ̸⊢fin φ for any sound provability relation ⊢fin.
To convey to the reader at least some feeling of the issue, let us mention the deep

Wedderburn’s Theorem, stating that every finite division ring is a field. In other words,
the commutative law xy = yx is finitely satisfied in the theory of division rings. On the
other hand, the infinite division ring of all quaternions (H; +, ·, 0, 1) is non commutative;
therefore, the commutative law for multiplication is not a first order consequence of the
axioms for division rings.

Exercise. We say that an L-formula φ is logically valid if it is satisfied in every L-
structure A. Two L-formulas φ, ψ are called logically equivalent, notation φ ≡ ψ if the
formula φ ⇔ ψ is logically valid. A formula φ is said to be in prenex normal form if it
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has the shape (Q1 x1) . . . (Qn xn)ψ where Q1, . . . , Qn are arbitrary quantifiers and ψ is
a quantifier-free formula.

(a) Show that, for any formulas φ, ψ, the following pairs of formulas are logically
equivalent:

¬(∀x)φ ≡ (∃x)¬φ ¬(∃x)φ ≡ (∀x)¬φ
(∀x)φ ∧ ψ ≡ (∀x)(φ ∧ ψ) (∃x)φ ∨ ψ ≡ (∃x)(φ ∨ ψ)
(∀x)φ⇒ ψ ≡ (∃x)(φ⇒ ψ) ψ ⇒ (∃x)φ ≡ (∃x)(ψ ⇒ φ)

(b) Show that, for any formulas φ, ψ such that the variable x has no free occurrence
in ψ, the following pairs of formulas are logically equivalent:

(∀x)φ ∨ ψ ≡ (∀x)(φ ∨ ψ) (∃x)φ ∧ ψ ≡ (∃x)(φ ∧ ψ)
(∃x)φ⇒ ψ ≡ (∀x)(φ⇒ ψ) ψ ⇒ (∀x)φ ≡ (∀x)(ψ ⇒ φ)

In each case decide which of the implications “left ⇒ right”, “right ⇒ left” remain
logically valid even without the assumption that x has no free occurrence in ψ, and give
examples that in the remaining cases this assumption cannot be omitted.

(c) Using (a) and (b) show that every L-formula is logically equivalent to some formula
in prenex normal form.

(d) Replace any case of the logical equivalences θ ≡ χ in (a) and (b) by the formula
θ ⇔ χ and show that all the formulas thus obtained are provable from the logical axioms
(in fact just from the propositional axioms and the quantifier axioms).

The Deduction Theorem and its Corollaries

On the way to the demonstration of the Completeness Theorem we are going to state
several results which are of independent interest in their own right. The first group
consists of the Deduction Theorem and its two corollaries, namely the Theorem on Proof
by Contradiction and the Theorem on Proof by Distinct Cases, which are analogous to
their propositional counterparts.

Deduction Theorem. Let T be a theory in a first order language L and φ, ψ be any
L-formulas. If φ is closed then T ⊢ φ⇒ ψ if and only if T ∪ {φ} ⊢ ψ.

The easy fact that from T ⊢ φ ⇒ ψ there follows T ∪ {φ} ⊢ ψ can be established
in exactly the same way as the corresponding implication in the demonstration of the
Deduction Theorem in Propositional Calculus, even without the assumption that φ
is closed. It is the converse which is needed for the justification of the usual way of
argumentation when proving the implication φ ⇒ ψ in T by proving ψ in T ∪ {φ}.
This can be established in a similar, just a little bit more complicated way, as the
demonstration of the corresponding implication in Propositional Calculus, again. One
just has to deal additionally with the case when ψ follows from some preceding item of



38

its proof in T ∪ {φ} by the Rule of Generalization (Gen). Let us fill in this gap, leaving
the details to the reader.

Demonstration. Assume that ψ0, ψ1, . . . , ψn is a proof of the formula ψ in the theory
T ∪ {φ} and ψn follows from some previous formula ψk, where 0 ≤ k < n, by (Gen).
Then ψk is provable in T ∪{φ} and, by an induction argument, we can assume that the
implication φ⇒ ψk is provable in T . Thus ψ has the form (∀x)ψk for some variable x.
Now the following formulas are provable in T :

(1) φ⇒ ψk
(2) (∀x)(φ⇒ ψk) follows from (1) by (Gen)
(3) (∀x)(φ ⇒ ψk) ⇒ (φ ⇒ (∀x)ψk) is an instance of the quantifier axiom scheme
(QAx1), as φ is closed so that x has no free occurrence in it

(4) (φ⇒ (∀x)ψk) can be inferred from (2) and (3) by (MP)
Thus, finally, T ⊢ φ⇒ ψ.

Next we show that, in general, one cannot do without the assumption that φ is closed.

Example. Let L be the language of pure equality, i.e., the first order language without
any specific symbols (F = C = R = ∅) and T = ∅ be the theory without any specific
axioms in L. Denote by φ the formula x = y and by ψ the formula x = z. We claim
that T ∪ {φ} ⊢ ψ, nevertheless, T ̸⊢ φ ⇒ ψ. T ∪ {φ} = {φ} is the theory with a single
axiom x = y. It means that all the models of this theory have just a one-element base
set. Applying (Gen) to this axiom, we see that T ∪ {φ} ⊢ (∀ y)(x = y). Now, we have
the quantifier axiom (∀ y)(x = y) ⇒ x = z, and using (MP) we infer x = z. At the
same time, the implication φ⇒ ψ, i.e., x = y ⇒ x = z is not provable just from logical
axioms, i.e., in the theory T . Namely, if this were the case, then it would be satisfied
in every L-structure A. However, every A with at least a two-element base set with
elements a ̸= b violates this implication, since substituting a for both x and y and b for
z we have a = a, nevertheless a ̸= b.

A theory T in a first order language L is called inconsistent or contradictory if there
is some closed L-formula φ such that T ⊢ φ as well as T ⊢ ¬φ. Otherwise, T is called
consistent or contradiction-free. It can be easily verified that T is inconsistent if and
only if every L-formula is provable in T .
The following results follow from the Deduction Theorem in the same way as in

Propositional Calculus.

Corollary on Proof by Contradiction. Let T be a theory in a first order language
L and φ be a closed L-formula. Then T ⊢ φ if and only if the theory T ∪ {¬φ} is
contradictory (inconsistent).

Corollary on Proof by Distinct Cases. Let T be a theory in a first order language
L and φ, ψ be any L-formulas. If φ is closed then T ⊢ ψ if and only if T ∪ {φ} ⊢ ψ
and T ∪ {¬φ} ⊢ ψ.

Exercise. Find examples showing that the assumption that φ is closed cannot be omit-
ted from the above Corollaries.
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Complete Theories

Another important property of first order theories closely related to consistency is that
of their completeness. A theory T in a first order language L is called complete if it
consistent and for any closed L-formula φ we have T ⊢ φ or T ⊢ ¬φ. In other words,
T is complete if and only if, for every L-sentence φ, either T ⊢ φ or T ⊢ ¬φ (but not
both).

Example. The reader may wonder why in the definition of complete theories we have
required that T can decide just the closed formulas, ignoring the remaining ones. For
the sake of explanation, consider the formula x = y and its negation x ̸= y. If the
provability of one of them were included in the requirement of completeness of a theory
T then, in the first case, T would have just one-element models, or, in the second case,
it would be contradictory. As a consequence, any consistent theory “complete” in such
a sense would have trivial models, only.

Using the Theorem on Proof by Contradiction, complete theories can be characterized
as maximal consistent theories in the following sense:

Corollary on Complete Theories. Let T be a consistent theory in a first order
language L. Then T is complete if and only if, for every L-sentence φ, either T ⊢ φ or
the theory T ∪ {φ} is contradictory.

In other words, extending the axiom list of a complete theory T by any sentence φ
makes no sense: either φ is already provable in T (in which case the sets of formulas
provable in T and T ∪ {φ} coincide) or T ∪ {φ} turns inconsistent hence worthless.
Most of the relevant first order theories occurring in mathematics are not complete.

On the other hand, many of them have important complete extensions. In this place we
just mention some examples of complete theories without proving their completeness.

Divisible Abelian Groups. The Theory of Groups is not complete: for instance, the
fact that there exist both abelian as well as nonabelian groups shows that neither the
commutativity law (∀x, y)(xy = yx) nor its negation can be proved in it. Here we
describe some relatively simple complete extensions of the Theory of Abelian Groups.
An abelian group G = (G; +, 0) is called nontrivial if (∃x)(x ̸= 0) holds in G; it is

called divisible if it is nontrivial and satisfies the condition

(∀x)(∃ y)(n× y = x)

for every integer n ≥ 2, where n × x = x + . . . + x with n-fold occurrence of x. G is
called torsion-free if it satisfies all the conditions

n× x = 0 ⇒ x = 0

for n ≥ 2. Given a fixed n ≥ 1, we say that G is a group of exponent n if it satisfies
(∀x)(n×x = 0). It is known that the Theory of Divisible Torsion-Free Abelian Groups,
as well as every Theory of Divisible Abelian Groups of Exponent p, for a fixed prime
number p, is complete.
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Real Closed and Algebraically Closed Fields. It can be shown that the Theory
of Real Closed Fields (both in its unordered as well as in its ordered version) is com-
plete. On the other hand, The Theory of Algebraically Closed Fields is not complete.
Nonetheless, its complete extensions can be fully described.
The characteristic of a unitary ring A = (A; +, ·, 0, 1) is the least integer char(A) =

n ≥ 1 such that n × 1 = 0, or char(A) = ∞ if n× 1 ̸= 0 for each n ≥ 1 (some authors
put char(A) = 0 in this case). It is known that the characteristic of any field is either a
prime or ∞. A field (F, +, ·, 0, 1) has the prime characteristic p if and only if it satisfies
p×1 = 0, it has the characteristic∞ if and only if it satisfies all the conditions p×1 ̸= 0
for every prime number p. Every Theory of Algebraically Closed Fields of a fixed prime
Characteristic p, as well as the Theory of Algebraically Closed Fields of Characteristic
∞ is complete.

Dense Linear Order. A linearly ordered set (A; <) is called dense if it satisfies the
condition

(∀x, y)
(
x < y ⇒ (∃ z)(x < z < y)

)
(A; <) is without endpoints if it satisfies the condition

(∀x)(∃ y, z)(y < x < z)

The Theory of Dense Linear Order without Endpoints can be proved to be complete.
Three more complete extension of the Theory of Dense Linear Order can obtained by
the variation of the condition of the existence of endpoints in the obvious way.

Atomic and Atomless Boolean Algebras. An element a ∈ B of a Boolean algebra
B = (B; ∧,∨, ′, 0, 1) is called an atom if a ̸= 0 and there is no element b ∈ B such that
0 < b < a. Formally, we can extend the language of Boolean algebras by a new unary
predicate At(x) defined by

At(x) ⇔ x ̸= 0 ∧ (∀ y)(0 ≤ y ≤ x ⇒ y = 0 ∨ y = x)

using the previously defined symbol ≤ . Then B is called atomic if for every nonzero
element of B there is an atom contained in it, i.e., B satisfies the condition

(∀x)(x ̸= 0 ⇒ (∃ y)(At(y) ∧ y ≤ x))

B is called atomless if it has at least two elements and contains no atom. This can be
expressed by the nontriviality condition 0 ̸= 1 and a kind of density axiom

(∀x)(x ̸= 0 ⇒ (∃ y)(0 < y < x))

The Theory of Atomic Boolean Algebras with Infinitely Many Atoms as well as every
Theory of Atomic Boolean Algebras with precisely n Atoms for any n ≥ 0 are complete.
Similarly, the Theory of Atomless Boolean Algebras is complete, too. Moreover, all the
complete extensions of the Theory of Boolean Algebras can be effectively described by
a pair of integer invariants; however, this description is already beyond the scope of our
exposition.

Presburger Arithmetic. Later on, when dealing with Gödel’s Incompleteness Theo-
rems, we shall see that not only Peano Arithmetic is not complete but also its comple-
tions cannot be effectively described. On the other hand, it has an interesting complete
subtheory called Presburger Arithmetic, describing the structure of addition (and the
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successor operation) of natural numbers. Its language contains just the constant symbols
0 and 1 and the operation symbol +; its axioms are obtained from the axioms of Peano
Arithmetic by omitting those containing the symbol of multiplication, i.e., the couple
forming the right most column of the seven individual axioms of PA as well as all the
instances of the Scheme of Induction where the formula φ(x, u⃗) contains the operation
symbol · .

Results on Language Extensions

When proving a universally quantified statement of the form (∀x1, . . . , xk)φ(x1, . . . , xk)
in a first order theory T , we usually begin with the phrase: “Let x1, . . . , xn be arbitrary
elements . . . ” That, however, means that we do not consider x1, . . . , xn in our proof
as variables any more, and deal with them as with some unspecified constants. The
following result shows that such a kind of argumentation is legitimate in First Order
Logic.

Theorem on Constants. Let T be a theory in a first order language L, φ(x1, . . . , xk)
be an L-formula and c1, . . . , ck be pairwise distinct constant symbols not occurring in
L. Then

T ⊢ φ(c1, . . . , ck) if and only if T ⊢ (∀x1, . . . , xk)φ(x1, . . . , xk)

Demonstration. Assume that T ⊢ φ(c1, . . . , ck). Let’s realize that T is a theory in
the language L not containing the constants c1, . . . , ck, so that the theory T “cannot
know anything about them”. Therefore, everything what can be proved in T about
these constants can be proved about conveniently chosen distinct variables x1, . . . , xk
not occurring in the original proof— it suffices to replace every occurrence of the symbol
symbol ci by the variable xi. Then T ⊢ φ(x1, . . . , xk) and the needed conclusion follows
by the Rule of Generalization. The reversed implication is trivial.

It is clear that the above theorem remains true also in case when the constants
c1, . . . , ck belong to L but they do not occur in any of the specific axioms of T .

When developing and building a mathematical theory we seldom keep its language
fixed for all the time. Just the opposite, we often define new notions, corresponding
to some operations, relations or distinguished elements, and introduce new symbols for
them. These new symbols, as a rule, denote important or frequently occurring concepts,
abbreviate otherwise cumbersome formulations and that way contribute to transparency
and intelligibility of the theory. Even in our course we already several times did so in the
part devoted to various examples of first order theories, without paying special attention
to this point. In particular, we extended the language of Group Theory consisting of a
single binary operation symbol · by the constant symbol e for the unit element and the
unary operation symbol −1 for taking inverses, we also extended both the language of
the Theory of Boolean Algebras as well as of the language of Peano Arithmetic by the
order relation symbol ≤ , etc. Now, we will treat this situation in general.
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Let L = (F,C,R, ν) and L′ = (F ′, C ′, R′, ν′) be two first order languages. We say the
language L′ is an extension of the language L if F ⊆ F ′, C ⊆ C ′, R ⊆ R′ and for each
operational or relational symbol s ∈ F ∪ R we have ν′(s) = ν(s), i.e., the arities of the
symbol s in L and L′ coincide. Is it the case, we write L ⊆ L′ or L′ ⊇ L. Then any first
order theory T in the language L can be considered as a theory in the language L′ ⊇ L.
The other way round, from any L′-structure A = (A; I) one can obtain an L-structure
A ↾L = (A; I ↾L), called the restriction of A to L, by leaving its base set A and the
interpretations sI of all the symbols of L unchanged and omitting the interpretations of
the remaining symbols of L′. We are particularly interested in the case when the new
symbols extending L are introduced by means of definitions by L-formulas in T .
The unique existence quantification (∃!x)φ is introduced as the abbreviation for

(∃x)
(
φ ∧ (∀ y)(φ(y/x)⇒ y = x)

)
where y is any variable not occurring in φ.

Let T be a theory in a first order language L. Dealing with constant, functional and
relational symbols we distinguish three possibilities:

(a) Let φ(x) be an L-formula such that T ⊢ (∃!x)φ(x). We extend the language L by
a new constant symbol d not occurring in L and the theory T by the axiom

x = d ⇔ φ(x)

(b) Let ψ(x1, . . . , xn, y) be an L-formula such that T ⊢ (∀x1, . . . , xn)(∃! y)ψ(x⃗, y). We
extend the language L by a new n-ary functional symbol g not occurring in L and
the theory T by the axiom

y = g(x1, . . . , xn) ⇔ ψ(x1, . . . , xn, y)

(c) Let ρ(x1, . . . , xn) be any L-formula. We extend the language L by a new n-ary
relational symbol q not occurring in L and the theory T by the axiom

q(x1, . . . , xn) ⇔ ρ(x1, . . . , xn)

In any of the above cases we say that the constant symbol d or the functional symbol g
or the relational symbol q, respectively, were introduced by the corresponding definition
in T . The reader should realize that, regarding constant symbols as nullary functional
symbols, (a) can be considered as a special case of (b).
We say that a theory T ′ in a first order language L′ is an extension of the theory T

in the first order language L by definitions if L′ is an extension of L by finitely many
specific symbols and the specific axioms of T ′ are obtained extending T by consecutive
introduction of the new symbols of L′ by definitions. Thus introducing a new symbol at
some step we can use not just the means of the original language L in its definition but
also the previously introduced symbols. Now it is clear that every model A = (A; I) of
the theory T in the language L has a unique extension to a model A′ = (A; I ′) of T ′

in the language L′. It is obtained by repeated interpretation of each newly introduced
symbol in A′ using its defining formula in the language L extended by the previously
introduced symbols.
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Although the new theory T ′ enables to express several concepts in a more concise and
readable way, concerning statements in the original language L, it cannot prove more
then the original theory T .
A theory T ′ in a first order language L′ extending a theory T in a first order language

L ⊆ L′ is called a conservative extension of T if for any closed L-formula φ we have

T ′ ⊢ φ if and only if T ⊢ φ

Obviously, every conservative extension of a consistent theory is itself consistent.

Theorem on Extension by Definitions. Assume that the theory T ′ in a first order
language L′ is obtained as an extension by definitions of a theory T in a first order
language L ⊆ L′. Then T ′ is a conservative extension of T .

In order to demonstrate the Theorem it would be enough to deal with the case when
L′ and T ′ are obtained from L and T by introducing a single defined symbol. The
idea of the proof is simple: it consists in replacing every instance the defined formula
x = d, y = g(x1, . . . , xn) or q(x1, . . . , xn), respectively, by an appropriate instance of
the corresponding L-formula defining it. However, its realization would require to take
care of some technical details which we skip as they would not contribute to the reader’s
understanding the issue.

Exercise. Extensions by defined constants, operations or relation are fairly frequent in
Set Theory.
(a) Write explicitly the defining formulas for the empty set constant ∅, the operations

of the unordered pair of elements {x, y}, of the union
∪
X, as well as for all the operations

of taking the subset {x ∈ X : φ(x, u⃗)} from the Scheme of Comprehension.
(b) Using appropriate instances of the Scheme of Comprehension introduce the binary

operations of intersection X ∩ Y = {u : u ∈ X ∧ u ∈ Y } and set-theoretical difference
X ∖ Y = {u : u ∈ X ∧ u /∈ Y }.
(c) Write the defining formula for the subset relation X ⊆ Y and, using it, introduce

the power set operation P(X).
(d) Using the operations of unordered pair {x, y} and union

∪
X, introduce the binary

operation of union X ∪ Y = {u : u ∈ X ∨ u ∈ Y }.
(e) Using the operation of unordered pair, introduce the operation of ordered pair as

(x, y) = {{x}, {x, y}} and prove that

(x, y) = (u, v) ⇔ x = u ∧ y = v

(f) Using the operations of ordered pair (x, y), binary union X ∪ Y and power set
P(X), as well as an appropriate instance of the Scheme of Comprehension, introduce
and justify the operation of cartesian product

X × Y = {(x, y) : x ∈ X ∧ y ∈ Y }
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Gödel’s Completeness Theorem

Assume that L = (F,C,R, ν) is a first order language containing at least one constant
symbol (i.e., C ̸= ∅). Denote by K the set of all constant terms of L. Then K becomes
the base set of an L-structure K = (K; . . . ), obtained by interpreting the specific symbols
of L in the following natural way:

(a) for any n-ary functional symbol f ∈ F and constant terms t1, . . . , tn ∈ K, fK(t1, . . . , tn)
is the constant term f(t1, . . . , tn) ∈ K;

(b) for any constant symbol c ∈ C, cK is the constant term c ∈ K;

(c) for any n-ary relational symbol r ∈ R and constant terms t1, . . . , tn ∈ K, we put
(t1, . . . , tn) ∈ rK if and only if T ⊢ r(t1, . . . , tn).

Additionally we introduce the following binary relation ∼T on K:

t1 ∼T t2 ⇔ T ⊢ t1 = t2

for t1, t2 ∈ K. If there’s no danger of confusion, we write just ∼ instead of ∼T .

Exercise. Using the Axioms of Equality show that

t ∼ t

t1 ∼ t2 ⇒ t2 ∼ t1

(t1 ∼ t2 ∧ t2 ∼ t3) ⇒ t1 ∼ t3

(t1 ∼ s1 ∧ . . . ∧ tn ∼ sn) ⇒ f(t1, . . . , tn) ∼ f(s1, . . . , sn)

(t1 ∼ s1 ∧ . . . ∧ tn ∼ sn) ⇒ (r(t1, . . . , tn)⇔ r(s1, . . . , sn))

for any t, t1, t2, t3 ∈ K, all n-ary symbols f ∈ F , r ∈ R and any t1, s1, . . . , tn, sn ∈ K.

The first three conditions express the fact that∼ is reflexive, symmetric and transitive,
i.e., it is an equivalence relation on the set K. For each t ∈ K we denote by

t̃ = {s ∈ K : s ∼ t}

the set of all constant terms equivalent with t, i.e., all such s ∈ K for which the equality
s = t can be proved in T . We always have t ∈ t̃, t̃ = s̃ if and only if t ∼ s, and t̃∩ s̃ = ∅
if t ̸∼ s. Thus we can form the quotient set

K/∼=
{
t̃ : t ∈ K

}
,

i.e., the partition of K into blocks of pairwise equivalent elements. Alternatively, K/∼
can be viewed as the result of identifying or merging in a single element all pairwise
equivalent elements of K, i.e., considering the equivalence relation ∼ as a “new equality”
on K. The last two compatibility conditions express the fact that both the operations
and the relations in K preserve the equivalence relation, i.e., the “new equality” ∼.
The quotientM = K/∼ becomes the base set of an L-structureM = (M ; . . . ), again,

obtained by interpreting the specific symbols of L in the following natural way:
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(a) for any n-ary functional symbol f ∈ F and equivalence blocks t̃1, . . . , t̃n ∈ M ,
fM

(
t̃1, . . . , t̃n

)
is the block f(t1, . . . , tn)˜ ∈M of the constant term f(t1, . . . , tn) ∈

K;

(b) for any constant symbol c ∈ C, cM is the block c̃ ∈M of the constant term c ∈ K;

(c) for any n-ary relational symbol r ∈ R and equivalence blocks t̃1, . . . , t̃n ∈ M , we
put

(
t̃1, . . . , t̃n

)
∈ rM if and only if T ⊢ r(t1, . . . , tn).

The compatibility conditions for ∼ guarantee that the above definitions of the interpre-
tations fM, rM of the operation and predicate symbols, respectively, are correct, i.e.,
they do not depend on the particular representatives of the equivalence blocks t̃i.
In order to stress the role of the theory T in the construction of the structureM, we

denote it byM(T ) =M = (M ; . . . ) and call it the canonical structure of the theory T .

Example. The constant terms in the language of Peano Arithmetic PA are composed of
the constant symbols 0 and 1 by means of the operations of addition and multiplication.
For instance, 1, 0+1, 1+0, 1·1, 0+(1·1) are five different constant terms, however, they all
denote the same natural number 1, and, at the same time, the equality between any pair
of them is provable in PA. In other words, 1 ∼PA 0+1 ∼PA 1+0 ∼PA 1·1 ∼PA 0+(1·1). In
fact, there are infinitely many constant terms t in the language of PA such that 1 ∼PA t.
Similarly, the natural number 2 denotes the equivalence block of the constant term 1+1
or of any constant term provably equivalent to it, etc. The reader should realize that
the canonical structure M(PA) of the theory PA coincides with its standard model
(N; +, ·, 0, 1).

It would be nice if we could guarantee that M(T ) ⊨ T , i.e., that the canonical
structure M(T ) is a model of T for any consistent first order theory T (in a language
L containing at least one constant symbol). Unfortunately, this is not always the case.
Nevertheless, we can prove thatM(T ) ⊨ T for theories satisfying a couple of conditions,
to be formulated below.
The first of these conditions is the completeness of the theory T , similarly as in

Propositional Calculus. The second condition has no propositional analogue. Given an
L-formula φ(x) (with a single free variable x), a constant L-term t is called a witness of
the sentence (∃x)φ(x) in the theory T if

T ⊢ (∃x)φ(x)⇒ φ(t)

(Notice that the substitution of a constant term for any variable is always admissible.)
Since we always have T ⊢ φ(t)⇒ (∃x)φ(x), t is a witness of (∃x)φ(x) if and only if

T ⊢ (∃x)φ(x)⇔ φ(t)

Is it the case, then we have T ⊢ (∃x)φ(x) if and only if T ⊢ φ(t).
A theory T in a first order language L (containing at least one constant symbol) is

called a Henkin theory if every L-sentence of the form (∃x)φ(x) has a witness in T .
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Proposition. Let T be a complete Henkin theory in a first order language L (containing
at least one constant symbol). ThenM(T ) ⊨ T , in other words, the canonical structure
M(T ) of the theory T is a model of T .

Demonstration. We will show that, for any closed L-formula φ, we have

(*) T ⊢ φ if and only if M(T ) ⊨ φ

This already implies the needed conclusion M(T ) ⊨ T . We will proceed by induction
on the complexity of φ.
Every closed atomic L-formula φ has the form t = s or r(t1, . . . , tn) where t, s and

t1, . . . , tn are constant terms and r is an n-ary relational symbol. Thus for atomic
sentences (*) is true according to the definition of the structureM(T ).
Now, it is enough to perform the induction steps for the logical connectives ¬ and ∧,

and the existential quantifier ∃ .
Assuming (*) for φ, we’ll verify it for ¬φ by showing that the conditions T ⊢ ¬φ and

M(T ) ⊨ ¬φ are equivalent. T ⊢ ¬φ implies T ̸⊢ φ since T is consistent, the reversed
implication follows from the completeness of T . Thus the conditions T ⊢ ¬φ and T ̸⊢ φ
are equivalent. However, T ̸⊢ φ is equivalent toM(T ) ̸⊨ φ by the inductive assumption,
and that is equivalent toM(T ) ⊨ ¬φ.
Assuming (*) for both φ and ψ, we’ll verify it for φ ∧ ψ. Obviously, the following

conditions are equivalent: T ⊢ φ ∧ ψ; T ⊢ φ and T ⊢ ψ; M(T ) ⊨ φ and M(T ) ⊨ ψ;
M(T ) ⊨ φ ∧ ψ (the inductive assumption is needed to ensure the equivalence of the
second and the third condition).
Finally, assuming (*) for all the sentences φ(t) where t is a constant term, we will

verify it for the sentence (∃x)φ(x). Since T is a Henkin theory, the sentence (∃x)φ(x) has
some witness t in T , hence the condition T ⊢ (∃x)φ(x) is equivalent to the existence of
some constant term t such that T ⊢ φ(t). By the inductive assumption, this is equivalent
to the existence of some constant term t such that M(T ) ⊨ φ(t), i.e., M(T ) ⊨ φ

(
t̃
)
.

SinceM(T ) = (M ; . . . ) and M = K/∼ consists entirely of elements of the form t̃ where
t is a constant term, the last condition is equivalent toM(T ) ⊨ (∃x)φ.
Exercise. Assume that S is a contradictory theory in a first order language L. Describe
its canonical structure M(S) and realize that it is not a model of S. Find complete
(hence consistent) theory T in L such thatM(S) =M(T ) ⊨ T .
Using the Axiom of Choice (one of the higher axioms of Set Theory) it is possible to

prove the following theorem. The interested reader will find its proof in the Appendix.
Dealing with a fixed first order language L, a new symbol (no matter whether a constant,
functional or relational one) always means a specific symbol not occurring in L.

Theorem on Complete Henkin Extensions. Let T be a consistent theory in a first
order language L = (F,C,R, ν). Then there is an extension of L by a set D of new
constant symbols to a first order language LD = (F,C ∪D,R, ν) and an extension of T
to a complete Henkin theory T̂ ⊇ T in the language LD.

We will use the last Theorem in the demonstration of the following result, which is
an alternative version of the Completeness Theorem.
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Gödel’s Completeness Theorem. Every consistent first order theory T has some
model A ⊨ T .
The reader should realize that also the other way round, if a first order theory has

some model then it must be consistent, in other words, a contradictory first order theory
cannot have any model. (This is the alternative version of the Soundness Theorem.)

Demonstration. Let T be a consistent theory in a first order language L, the first order
language LD be an extension of L by certain set D of new constant symbols, and
T̂ ⊇ T be a theory in LD forming a complete Henkin extension of T . According to the
last Proposition, the canonical structure M

(
T̂
)
of the theory T̂ is a model of T̂ , i.e.,

M
(
T̂
)
⊨ T̂ . Since T ⊆ T̂ , we haveM

(
T̂
)
⊨ T , henceM

(
T̂
)
is a model of T , as well.

Those who feel puzzled by the fact that T is a theory in the language L, whileM
(
T̂
)

is an LD-structure, can form the restriction M
(
T̂
)
↾ L of the LD-structure M

(
T̂
)
to

the language L. Then A =M
(
T̂
)
↾L is already an L-structure and, obviously, A ⊨ T .

Finally we can prove the original form of the Completeness Theorem. We state it in
the form comprising the Soundness Theorem, as well.

Completeness Theorem. Let T be a theory in a first order language L. Then, for
every L-formula ψ, T ⊨ ψ if and only if T ⊢ ψ.

Demonstration. If T ⊢ ψ then T ⊨ ψ by the Soundness Theorem. To show the converse,
assume that T ⊨ ψ, nevertheless T ̸⊢ ψ. Without loss of generality we can assume that
ψ is closed. (Otherwise, we can replace ψ by the sentence (∀x1, . . . , xn)ψ, which we
denote by ψ, where x1, . . . , xn are all the variables occurring freely in ψ. Then we have
T ⊢ ψ if and only if T ⊢ ψ, and T ⊨ ψ if and only if T ⊨ ψ.) As ψ is closed, from
T ̸⊢ ψ it follows that the theory T ∪ {¬ψ} is consistent by the Theorem on Proof by
Contradiction. Then, according to Gödel’s Completeness Theorem, T ∪ {¬ψ} has some
model A. Then A ⊨ T is a model of the theory T such that A ⊨ ¬ψ. However, since
T ⊨ ψ, we have B ⊨ ψ for every model B of T ; in particular, A ⊨ ψ. This contradiction
proves that T ⊢ ψ.

The Compactness Theorem

Once we have established Gödel’s Completeness Theorem, the first order version of the
Compactness Theorem can be demonstrated as its corollary in essentially the same way
as its Propositional Calculus version. We leave it to the reader as an exercise.

Compactness Theorem. Let T be a theory in a first order language L. Then T has
some model if and only if every finite subtheory T0 of T has some model.

However, unless its Predicate Calculus version, the first order version of the Compact-
ness Theorem has several important consequences. We confine ourselves to just some
few examples. At least in some of them the reader should experience the feeling that the
Compactness Theorem enables to prove the existence of certain models of some theories
almost— if not even literally—“out of nothing.”
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To start with, the reader should realize the following immediate consequence of the
Compactness Theorem.

Corollary. Let T , S be two theories in a first order language L. Then the theory T ∪S
has some model if and only if, for every finite subtheory U of S, the theory T ∪ U has
some model.

A first order theory is said to have arbitrarily big finite models if for every natural
number n ≥ 1 there is a model A = (A; . . . ) of the theory T such that |A| ≥ n.

Theorem. Let T be a theory in a first order language L. If T has arbitrarily big finite
models, then T has some infinite model, as well.

Demonstration. For every n ≥ 2 we denote by σn the following sentence in the language
of pure equality:

(∃x1, . . . , xn)
( ∧
1≤i<j≤n

xi ̸= xj
)

Then, for any L-structure A = (A; . . . ), we have A ⊨ σn if and only if |A| ≥ n.
For each n ≥ 2 we denote by Sn the first order theory with axioms σ2, . . . , σn and by

S = {σn : 2 ≤ n ∈ N} the theory formed by all the axioms σn. Obviously, a first order
structure A is infinite if and only if A ⊨ S.
Assume that T has arbitrarily big models. This is to say that each of the theories

T ∪Sn, where n ≥ 2, has some model. Then, however, for every finite subtheory U ⊆ S,
there is some n ≥ 2 such that U ⊆ Sn. Since any model of the theory T ∪Sn is a model
of T ∪ U , the theory T ∪ U has some model. By the Compactness Theorem the theory
T ∪ S has some model A, as well. This A is an infinite model of T .

Exercise. (a) Show that if a first order theory T in the language of the Theory of
Unitary Rings has as its models unitary rings of arbitrarily big finite characteristic then
it has as a model also a unitary ring of characteristic ∞.
(b) Show that the characteristic of a field is either a prime or ∞ and prove that

if a first order theory T in the language of the Theory of Unitary Rings has as its
models fields of arbitrarily big prime characteristic then it has as a model also a field of
characteristic ∞.
(c) Show the following Robinson’s Principle: If a sentence φ in the language of the

Theory of Unitary Rings is satisfied in every field of characteristic ∞ then there is a
prime number p such that φ is satisfied in every field of prime characteristic q ≥ p.

Another striking consequence of the Compactness Theorem is the existence of non-
standard models of Peano Arithmetic.

Theorem. Peano Arithmetic has some nonstandard models.

Demonstration. Let us extend the language of PA by a new constant symbol q. Let
χn denote the formula q ̸= n in the extended language (recall that, for every natural
number n, we denote by n also the constant term (. . . (0+1)+ . . .+1)+1 in the language
of PA obtained by adding 1 repeatedly n times to 0).
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We introduce the theories S = {χn : n ∈ N} and Sn = {χ0, χ1, . . . , χn} for each
n ∈ N. Interpreting qMn as the natural number n+ 1, we obtain the model

Mn = (N; +, ·, 0, 1, n+ 1) ⊨ PA∪Sn

of the theory PA∪Sn. By the Compactness Theorem it follows, that also the theory
PA∪S has some modelM = (M ; +, ·, 0, 1, q). In this model, the interpretation qM ∈M
of the symbol q differs from all the constant terms n ∈ N, thus (M ; +, ·, 0, 1) is a
nonstandard model of PA.

Intuitively, (M ; +, ·, 0, 1) can be viewed as a number system extending the standard
natural number system (N; +, ·, 0, 1) by some ideal “infinite” natural numbers, with one
of them represented by (the interpretation of) the constant symbol q. Then of course,
q − 1, q + 1, 2q, q2, etc., represent different infinite elements of M . Moreover, if p ∈M
is any infinite element then so is p − 1, since if p − 1 were finite then p = (p − 1) + 1
would be finite, too. Thus the nonempty set of all infinite elements of M has no least
element, seemingly contradicting the Well Ordering Principle implied by the Scheme of
Induction of PA. Nonetheless, this paradox has a simple resolution: the sets of finite
and infinite elements inM , respectively, are not first order expressible. This means that
there are no formulas φ(x, u1, . . . , un), ψ(x, u1, . . . , un) in the language of PA and no
(finite or infinite) elements p1, q1, . . . , pn, qn ∈M such that

{a ∈M : a is finite} = {a ∈M :M ⊨ φ(a, p1, . . . , pn)}
{a ∈M : a is infinite} = {a ∈M :M ⊨ ψ(a, q1, . . . , qn)}

Similar accounts show that there are also nonstandard number systems (∗R; +, ·, 0, 1),
extending the standard number system (R; +, ·, 0, 1) of all real numbers and satisfying all
the axioms of the Theory of Real Closed Fields, having the same first order properties
as (R; +, ·, 0, 1). Such number systems contain, besides standard reals, also infinite
(infinitely big) and infinitesimal (infinitely small) number quantities. Using them, it is
possible (among other things) to develop the infinitesimal (i.e., the differential and the
integral) calculus in an intuitively appealing way, close to its historically original form,
in the spirit of Newton, Leibniz, Euler and others, and that way to rehabilitate and
justify the approach abandoned during the 19th century in favor of the techniques of
limits and the εδ-analysis.

Cardinality of Models and Skolem’s Paradox

A detailed inspection of the proof of Gödel’s Completeness Theorem (both in Section . . .
as well as in the Appendix) would show that the construed model satisfies an additional
cardinality specification.
The cardinality of a first order language L = (F,C,R, ν) is defined as

∥L∥ = |Form(L)| = max(|F |, |C|, |R|,ℵ0)
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A first order language L is called countable if ∥L∥ = ℵ0. Obviously, any first order
language with just finitely many specific symbols is countable.
It is clear that the set K of all constant terms of any first order language L has

the cardinality |K| ≤ |Term(L)|. The base set M of the canonical structure M(T ) =
(M ; . . . ) of any theory T in the language L is a quotient M = K/∼T , therefore |M | ≤
|K|. Thus the canonical structureM(T ) = (M ; . . . ) of any theory in a first order order
language L has the cardinality

|M | ≤ |K| ≤ |Term(L)| ≤ |Form(L)| = ∥L∥

Similarly, the set D of new constant symbols, added to the language L for the sake
of construction of the complete Henkin extension T+ of T , has the same cardinality
∥L∥. Thus the new language L+ has the same cardinality as the original language L.
Putting things together, we see that the canonical structureM(T+) = (M ; . . . ) still has
the cardinality |M | ≤ ∥L∥. As a consequence, we obtain the following strengthening of
Gödel’s Completeness Theorem.

Theorem. Let T be a consistent theory in a first order language L of cardinality
∥L∥ = α. Then T has a modelM = (M ; . . . ) of cardinality |M | ≤ α.

Corollary 1. Every consistent first order theory in a countable language has a countable
model, i.e., a modelM = (M ; . . . ) of cardinality at most ℵ0.

Realizing that the usual language of Set Theory has a single specific symbol, namely
the binary relational symbol ∈ for the membership relation, we readily obtain:

Corollary 2. Any of the set theories ZF, ZFC (if it is consistent) has a countable model
M =

(
M ;∈M)

.

Moreover, by Mostowski Collapse Theorem, we can arrange that a ⊆ M for a ∈ M ,
and a ∈M b if and only if a ∈ b for all a, b ∈ M . Then, according to the Soundness
Theorem, everything that can be proved in Set Theory must be satisfied in M. In
particular, there are sets NM, RM ∈ M playing inM the role of the set of all natural
numbers and of the set of all real numbers, respectively. However, since NM ⊆ M ,
RM ⊆M , both the sets NM, RM are countable, hence (as it is clear that none of them
can be finite) there is a bijective mapping f : NM → RM. On the other hand, Cantor’s
Theorem “the set R of all real numbers is uncountable”, which is provable in Set Theory,
must be true inM, as well. This sounds like a contradiction.
This paradox was discovered by the Norwegian mathematician Thoralf Skolem in

1922. However, Skolem derived it from the Löwenheim-Skolem Downward Theorem
(which we will deal with later on) and not from Gödel’s Completeness Theorem (though
it was known to him well before Gödel proved and published it in 1930, but he neither
proved it nor formulated it explicitly). Skolem’s Paradox is not a contradiction proving
the inconsistency of Set Theory. It can be resolved in the following way: The bijection
f : NM → RM does not belong to the model M; in fact there is no function f ∈ M
establishing a bijective correspondence f : NM → RM. Thus Cantor’s Theorem still
holds inM. Informally, the set RM is uncountable just from the internal point of view
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(i.e., as a set belonging to the modelM), while from the external point of view it is still
countable. Nevertheless, Skolem’s Paradox indicates that the notions like countability
or uncountability, similarly as several other set-theoretical concepts concerning infinite
cardinal numbers, lack an absolute character.
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Appendix

Proof of the Theorem on Complete Henkin Extensions

Let (A; ≤) be a partially ordered set. An element m ∈ A is called maximal if there is
no element a ∈ A such that m < a. A subset C ⊆ A is called a chain if a ≤ b or b ≤ a
holds for any a, b ∈ C, i.e., if C is totally ordered by the relation ≤.
Any subset T ⊆ P(X) of the powerset of any set X will be referred to a sa a system

of subsets of X and automatically regarded as a partially ordered set (T ; ⊆) with the
relation of set-theoretical inclusion. We say that a system T ⊆ P(X) of subsets of a set
X has finite character if for any T ⊆ X we have T ∈ T if and only if F ∈ T for any
finite set F ⊆ T . We say that a system T ⊆ P(X) is inductive if for any chain C ⊆ T
also its union

∪
C belongs to T .

We record without proof the following two consequences of the Axiom of Choice with
the remark that anyone of them is in fact equivalent to it.

Teichmüller-Tukey Lemma. Let X be any set and T ⊆ P(X) be a system of finite
character of subsets of X. Then for every T ∈ T there exists a maximal elementM ∈ T
such that T ⊆M .

Zorn-Kuratowski Lemma. Let X be any set and T ⊆ P(X) be an inductive system
of subsets of X. Then for every T ∈ T there exists a maximal element M ∈ T such
that T ⊆M .

Let us take for X the set Φ = Form(L) of all formulas of some first order language L
and denote by T ⊆ P(Φ) the system of all consistent first order theories in L. As already
noticed in the proof of the Compactness Theorem, a theory is consistent if and only if
every its finite subtheory T0 ⊆ T is consistent. In other words, the system T ⊆ P(Φ) of
all consistent theories in L has finite character.
The other way round, given a chain C of consistent theories in L, it can easily be seen

that its union U =
∪
C is a consistent theory, again. Indeed, if U were contradictory

then there would be some sentence φ and a proof φ0, φ1, . . . , φm of φ in U , as well
as a proof ψ0, ψ1, . . . , ψn of its negation ¬φ in U . Let χ1, . . . , χk be all the axioms of
U occurring in any of these proofs. Then there are theories T1, . . . , Tk ∈ C such that
χi ∈ Ti for each i = 1, . . . , k. Since C is a chain, there is some p such that 1 ≤ p ≤ k
and Ti ⊆ Tp for any i = 1, . . . , k. Then {χ1, . . . , χk} ⊆ Tp, hence both φ0, φ1, . . . , φm
and ψ0, ψ1, . . . , ψn are already proofs in Tp, so that Tp is contradictory. However, this
is impossible, as Tp ∈ C and all the elements of C are consistent theories. Summing up,
the system of all consistent theories T ⊆ P(Φ) is inductive.
Now, both the Teichmüller-Tukey Lemma as well as the Zorn-Kuratowski Lemma

imply that every consistent theory T in a first order language L can be extended to a
maximal consistent theory M ⊇ T in L.

Exercise. Let T be a theory in a first order language L. We denote by

T ⊢ = {φ ∈ Form(L) : T ⊢ φ}
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the set of all L-formulas provable in T . Show that T is complete if and only if T ⊢ is a
maximal consistent theory.

The above Exercise has furnished us with the last piece of knowledge needed in order
to establish the following result.

Lindenbaum’s Theorem. Every consistent theory T in a first order language L can
be extended to a complete theory T+ ⊇ T in L.

Remark. Although (some equivalent alternative formulations of) the Axiom of Choice
played a crucial role in the proof of Lindenbaum’s Theorem, it is known that this theorem
is weaker than AC, in the sense that AC cannot be proved in Zermelo-Fraenkel Set
Theory assuming Lindenbaum’s Theorem.

Next we show a result on Henkin extensions of consistent theories.

Theorem on Conservative Henkin Extensions. Let T be a consistent theory in
a first order language L = (F,C,R, ν). Then there is an extension of L by a set D of
new constant symbols to a first order language LD = (F,C∪D,R, ν) and a conservative
extension of T to a Henkin theory TH ⊇ T in the language LD.

Demonstration. Our aim is to endow every sentence (∃x)φ(x) with a new witnessing
constant dφ and to extend T by the corresponding witnessing axiom (∃x)φ(x)⇒ φ(dφ).
However, doing so for all L-formulas φ(x), the language L is likely extended and new
sentences (∃x)φ(x) calling for their own witnessing constants arise. That’s why we have
to iterate the extension procedure recursively.
Let us denote by L0 = L the original first order language and by Φ0 the set of all

L0-formulas with a single free variable x. For every formula φ ∈ Φ0 we introduce a new
constant symbol dφ in such way that for different formulas φ,ψ ∈ Φ0 the symbols dφ,
dψ are distinct, as well. We denote by D0 = {dφ : φ ∈ Φ0} the set of all these constants,
by L1 the extension of the language L0 by the set D0 of the new constants and by

W0 = {(∃x)φ(x)⇒ φ(dφ) : φ ∈ Φ0}

the set of all the witnessing axioms for the sentences (∃x)φ(x) where φ ∈ Φ0.
Assuming that the set of formulas Φn, the set of constant symbolsDn = {dφ : φ ∈ Φn},

the language Ln+1 and the set of witnessing axiomsWn = {(∃x)φ(x)⇒ φ(dφ) : φ ∈ Φn}
are already defined, we denote by Φn+1 the set of all formulas of the language Ln+1 with
a single free variable x not belonging to the union

∪n
k=0 Φk. For every φ ∈ Φn+1 we

introduce a new (i.e., not occurring in the language Ln+1) constant symbol dφ, with
distinct symbols dφ, dψ corresponding to different formulas φ, ψ. Next we denote by
Dn+1 = {dφ : φ ∈ Φn+1} the set of all the recently added constants, by Ln+2 the
extension of the language Ln+1 by the set Dn+1 of these constants and by

Wn+1 = {(∃x)φ(x)⇒ φ(dφ) : φ ∈ Φn+1}

the set of all witnessing axioms for the sentences (∃x)φ(x) where φ ∈ Φn+1.
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Finally we put D =
∪
n∈NDn, W =

∪
n∈NWn and denote by LD the extension of

the language L by the set of the new constant symbols D. We claim that TH = T ∪W
is a Henkin theory in the language LD and a conservative extension of T .
It can be easily seen that every LD-sentence of the form (∃x)φ(x) has a witness in

the theory TH . Since φ contains just finitely many constant symbols from D (if any),
there is the smallest n ∈ N such that φ contains no symbol from Dm for all m ≥ n.
Then φ ∈ Φn and the sentence (∃x)φ(x) ⇒ φ(dφ) belongs to Wn hence to TH . Thus
the constant symbol dφ ∈ D is a witness of the sentence (∃x)φ(x) in TH .
In order to show that TH is a conservative extension of T it is enough to verify that

any L-sentence ψ provable in TH is provable already in T . If TH ⊢ ψ then there are
finitely many witnessing axioms θi of the form (∃x)φi(x) ⇒ φi(di) with 1 ≤ i ≤ k,
where we write di instead of dφi , such that T ∪ {θ1, . . . , θk} ⊢ ψ. If k = 0 then already
T ⊢ ψ and we are done; thus we can assume that k ≥ 1. Then it is enough to show that
the number k of witnessing axioms can be anytime reduced by 1.
There’s again the smallest n such that none of the formulas φ1, . . . , φk contain any

constant symbol from Dm for all m ≥ n. Then φj ∈ Φn for some j ∈ {1, . . . , k} and
none of the witnessing sentences θi for i ̸= j contains the symbol dj . For brevity’s sake
we denote φj by φ, dj by d and Θ = {θi : 1 ≤ i ≤ k, i ̸= j}. As a consequence of the
Deduction Theorem, we have

T ∪Θ ⊢
(
(∃x)φ(x)⇒ φ(d)

)
⇒ ψ

Now the reader is asked to realize that, for any propositional forms A, B, C, both the
propositional forms

((A⇒ B)⇒ C)⇒ (¬A⇒ C) and ((A⇒ B)⇒ C)⇒ (B ⇒ C)

are tautologies, therefore, by the Completeness Theorem for Propositional Calculus,
they are provable just from the propositional logical axioms. In particular, both the
formulas ((

(∃x)φ(x)⇒ φ(d)
)
⇒ ψ

)
⇒

(
¬(∃x)φ(x)⇒ ψ

)((
(∃x)φ(x)⇒ φ(d)

)
⇒ ψ

)
⇒ (φ(d)⇒ ψ)

are provable just from the propositional axioms of Predicate Calculus. Then, by Modus
Ponens, we have both

T ∪Θ ⊢ ¬(∃x)φ(x)⇒ ψ and T ∪Θ ⊢ φ(d)⇒ ψ

Since the symbol d doesn’t occur in any of the specific axioms of the theory T ∪ Θ,
applying the Theorem on Constants to the latter relation we obtain

T ∪Θ ⊢ (∀x)(φ(x)⇒ ψ)

Since ψ is closed, the variable x is not free in ψ, thus, according to (d) and the third
equivalence in (b) of Exercise on the prenex normal form,

T ∪Θ ⊢ (∃x)φ(x)⇒ ψ
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Since for any propositional forms A, B the propositional form

(A⇒ B)⇒ ((¬A⇒ B)⇒ B)

is a tautology, hence provable just from the logical axioms(cf. Exercise. . . (g)), we have

T ∪Θ ⊢ ((∃x)φ(x)⇒ ψ)⇒ ((¬(∃x)φ(x)⇒ ψ)⇒ ψ)

Applying Modus Ponens twice we get T ∪ Θ ⊢ ψ. Since the set Θ consists of k − 1
witnessing axioms, only, we are done.

Exercise. Show directly, i.e. without referring to the last Theorem, that the Henkin ex-
tension TH of the consistent theory T constructed in its demonstration is consistent. (It
can be done in a similar but simpler way than was the demonstration of conservativeness
of the extension TH .)

Combining the two recently established theorems, we can finally prove the announced
result.

Theorem on Complete Henkin Extensions. Let T be a consistent theory in a
first order language L = (F,C,R, ν). Then there is an extension of L to a first order
language LD = (F,C ∪D,R, ν) by a set D of new constant symbols and an extension of
T to a complete Henkin theory T̂ ⊇ T in the language LD.

Demonstration. Let TH be the conservative Henkin extension of the theory T in the
language LD = (F,C ∪D,R, ν) construed as above. Then, by Lindenbaum’s Theorem,
there is a complete theory T̂ = T+H ⊇ TH in the same language LD. Obviously, T̂ is a
Henkin theory, as well.



56

Selected Bibliography

B. Balcar, P. Štěpánek, Teorie množin, Academia, Praha 2000 (2. vyd.).

L. Bukovský, Množiny a všeličo okolo nich, Alfa, Bratislava 1985.

C. C. Chang, H. J. Keisler, Model Theory, Studies in Logic and the Foundations of
Mathematics, Elsevier, North Holland, Amsterdam 1990 (3rd ed.).

H.-D. Ebbinghaus, J. Flum, Finite Model Theory, Perspectives in Mathematical Logic,
Springer, Berlin-Heidelberg-New York 1999 (2nd ed.).

H. B. Enderton, A Mathematical Introduction to Logic, Hartcourt/Academic Press, San
Diego-New York-Boston-London-Toronto-Sydney-Tokyo 2001 (2nd ed.).
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Gödel’s Incompleteness Theorems

Gödel’s Incompleteness Theorems belong to the most remarkable achievements of the
20th century mathematics, shedding light on the limitations of formal methods and still
raising philosophical questions about the nature of human thought, its relations to our
brains and to computers, etc.

Kurt Gödel’s achievement in modern logic is singular and monumental— indeed,
it is more than a monument, it is a landmark which will remain visible far in
space and time. [ . . . ] The subject of logic has certainly completely changed its
nature and possibilities with Gödel’s achievement. (John von Neumann)

Liar’s Paradox and the Paradoxes of Russell and Berry

Let us recall the famous ancient Liar’s Paradox, also known as the Epimenidus Paradox,
usually ascribed to Eubilides of Miletus. In it the Cretan Epimenidus pronounces the
following sentence:

“All the Cretans are liars,”

tacitly assuming that “liar” means a person that always lies. If both the sentence and
the tacit assumption are true, then Epimenidus must be a liar and his statement must
be a lie, as well. Then at least one Cretan is not a liar (in the sense that he does not lie
all the time). Thus, finally, the sentence is not true, so Epimenidus has told us a lie. This
is not a contradiction, however, the fact that pronouncing a false sentence can guarantee
the existence of a person not lying all the time is still fairly paradoxical. The strong
version of the Liar’s Paradox is due to the medieval French scholar Jean Buridan:

“What I am telling right now is a lie.”

Even a simpler formulation is given by the following self-referential sentence:

“This sentence is not true.”

At least at a glance it looks like a proposition, thus is seems legitimate to ask the
question: “Is it true or false?” If it is false, then it must be true. Similarly, if it is true,
then it cannot be true, hence it must be false. We can conclude that it is true if and
only if it is not true. This is what we have in mind calling it the strong version of Liar’s
Paradox.
In everyday life we need not to worry too much about the Liar’s Paradox. We can

do away with it simply by marking that sentence as making no sense and not to care of
it any more. However, the situation changes radically if such a self-referential sentence
could be formulated within some formal deductive system like, e.g., an axiomatic first
order theory. Such a theory would be necessarily inconsistent. This namely happened to
the original version of Cantor’s “näıve” Set Theory.
Cantor’s Set Theory used the unlimited version of the Comprehension Principle in

forming sets:
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For any “reasonable” property P (x) one can form the set {x : P (x)} of all objects x
having this property.

However intuitively appealing this principle might appear, it is fairly hazy, unless we
make clear which properties we consider as “reasonable”. What’s even worse, this prin-
ciple enables to formulate a set-theoretical version of Liar’s Paradox, namely Russell’s
Paradox, named after the British logician and philosopher Bertrand Russell:

Cantor’s Comprehension Principle allows us to form the set

R = {x : x is a set and x /∈ x}
of all sets x not belonging to itself.

Then the question: “Does the set R belong to itself?” immediately produces a contra-
diction. Indeed, we have R ∈ R ⇔ R /∈ R.
Thus the original version of Cantor’s Set Theory is inconsistent; the unlimited Com-

prehension Principle makes it possible to reproduce the Liar’s Paradox inside of this
theory.
Liar’s Paradox can be avoided by restricting Cantor’s Comprehension Principle to

the following limited form:

For every set M and any “reasonable” property P (x) one can form the set
{x ∈M : P (x)} of all objects x from the set M having this property.

Then the previous formation of the set R becomes illegal, and Russell’s Paradox disap-
pears. Instead, it is transformed to the following fact:

There is no set of all sets.

Indeed, if there were the set V of all sets, then we could legally form the set

R = {x ∈ V : x /∈ x}
of all sets x not belonging to itself, and obtain the contradiction R ∈ R ⇔ R /∈ R once
again.

Berry’s Paradox demonstrates the need to clarify the vague concept of a “reasonable
property” and that way to make clear which properties can be used even in the limited
Comprehension Principle.

Consider the set A of all natural numbers which can be defined by some phrase of
English language consisting of less than twenty words. Since the English language has
a finite vocabulary, there are just finitely many English phrases consisting of less than
twenty words. Hence the set A is finite, and, as the set N of all natural numbers is infinite,
there exist natural numbers not belonging to the set A. In other words the complement
N ∖ A is nonempty, thus, according to the Well Ordering Principle, it contains the
smallest element. Then this natural number is defined by the English phrase

“The smallest natural number which cannot be defined by
any English phrase consisting of less than twenty words”

which has eighteen words, only. Hence the smallest element of the set N ∖ A has to
belong to the set A, as well. However, this is a contradiction, since A ∩ (N∖A) = ∅.
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In Quest for a Way Out of the Crisis

The discovery of paradoxes in Cantor’s Set Theory at the turn of the 19th and 20th

century threw the mathematics of that time into a deep crisis. Moreover, it happened
shortly after Set Theory had become widely accepted and recognized as the universal
foundations of the whole of mathematics, providing it with a general common language
and a firm ground on which all mathematical branches could be formulated and presented
in a uniform way. Therefore the task to find a way out of the crisis became highly acute.

Some mathematicians reacted by refusing completely the conception of actual in-
finity forming one of the cornerstones of Set Theory (H. Poincaré, L. E. J. Brouwer).
Namely Brouwer established the doctrine of intuitionism, insisting that the infinity can
be treated just as a potential and never completed process of growth or decay beyond
any limit. He also proposed a revision of logic, refusing some classical logical laws (e.g.,
the Law of Excluded Middle φ ∨ ¬φ, or the quantifier law ¬(∀x)¬φ(x) ⇒ (∃x)φ(x))
as inapplicable within the realm of potentially infinite domains. The competing doctrine
of logicism suggested to develop mathematics as a branch of logic (G. Frege, B. Russell,
A.N. Whitehead) and to avoid the self-reference phenomenon, which they found respon-
sible for the contradictions, by means of a fairly complicated hierarchy of the Theory of
Types. However, none of these conceptions could compete with the approaches offered
by the Set Theory making use of the full power of classical logic and, at the same time,
avoiding the cumbersome hierarchy of the Theory of Types, along with preserving the
conception of actually infinite sets.

The axiomatic system of Set Theory designed by Ernst Zermelo, and later on upgraded
by Abraham Fraenkel, became the generally accepted foundations of most of the modern
mathematics. The Paradoxes of Russell and Berry (and some similar ones) were avoided
by a cautious formulation of the Scheme of Comprehension, allowing to single out new
sets just as subsets of sets given in advance by means of properties described by set-
theoretical formulas. Three exceptions of sets, still described by set-theoretical formulas,
but not singled out from any in advance given set, are allowed by the Axioms of Pair,
Union and Power Set.

No one was able to reproduce the known paradoxes, nor to produce any contradic-
tion within the Zermelo-Fraenkel axiomatic system with the Axiom of Choice ZFC.
Unfortunately, this does not exclude the possibility that, all the same, there are some
contradictions, hidden deeply under the surface. This raised the task to prove the con-
sistency of ZFC or of some other axiomatic system of Set Theory, capable to undertake
the role of the foundations of mathematics. The project of proving the consistency of the
foundations of mathematics was formulated by David Hilbert, the leading figure of the
that time mathematics, who also designed the central notions and methods necessary
for that purpose. The project is known under the name Hilbert’s Program.
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Hilbert’s Program was an ambitious and wide-ranging project in the philosophy
and foundations of mathematics. In order to “dispose of the foundational
questions in mathematics once and for all”, Hilbert proposed a two-pronged
approach in 1921: first, classical mathematics should be formalized in axiomatic
systems; second, using only restricted, “finitary” means, one should give proofs
of the consistency of these axiomatic systems. Although Gödel’s Incompleteness
Theorems show that the program, as originally conceived, cannot be carried out,
it had many partial successes, and generated important advances in logical
theory and meta-theory, both at the time and since.

(Richard Zach, Hilbert’s Program Then and Now, arXiv:math/0508572)

Gödel’s Incompleteness Theorems

Preliminary Accounts

Consider the following self-referential sentence:

“This sentence is unprovable.”

tacitly assuming that every sentence which is provable, is necessarily true. Once again
we find legitimate to ask the question: “Is that sentence true or false?” If it is false,
then it is provable, hence it must be true. This contradiction shows that it cannot be
false, hence it is true. That way we have proved that this sentence is true, in other
words, we have proved the sentence. Thus it is provable, hence, since it declares its own
unprovability, it is false. At the same time, provable sentences must be true. It seems
that we once again obtained a contradiction, closely related to Liar’s Paradox.
However, this conclusion can be avoided by making precise the concept of provability.

If it means provability within some formal axiomatic system (e.g., within some first order
theory), then our proof of the above sentence is just an informal intuitive argumentation
showing that it is true, and not a proof within that system. Moreover, statements about
provability within a given formal system in general do not belong to that system, hence
the question of their provability within that system makes no sense. Thus it seems that
the threatening paradox can be swept away from the very beginning.
All the same, let us admit that some formal systems could perhaps satisfy the following

two properties:

(1) There is a sufficiently extensive distinguished class of statements formulated in the
language of that system such that all statements from this class which are provable
in the system are true in some intuitively appealing meaning of this word.

(2) There is a statement belonging to the above mentioned distinguished class declar-
ing its own unprovability within the system.

Then that system is necessarily incomplete in the following sense:

(3) There are intuitively true statements formulated in the language of the system
(and even belonging to that distinguished class) which are unprovable within that
system.
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Namely the statement belonging to that distinguished class and declaring its own un-
provability within the system is an example of an intuitively true statement which is not
provable within the system.

Now, the reader probably can hardly suppress the feeling that the existence of such
formal axiomatic systems (first order theories) is merely hypothetical, and in fact it
should be possible to show that nothing like that can exist. Thus it might be rather
surprising to realize what the young Austrian mathematician, logician and philosopher
Kurt Gödel (born 1906 in Brno) has proved in 1930. Namely, according to his First
Incompleteness Theorem, Peano Arithmetic, as well as any first order theory capable
to serve as the foundations of a reasonable fragment of mathematics, like ZF or ZFC,
provide examples of such axiomatic systems. According to his Second Incompleteness
Theorem, such systems are capable to formulate a statement declaring their own con-
sistency, nonetheless, if they are consistent, they are unable to prove it, though, in that
case, the statement itself is true. As one of the consequences of Gödel’s discoveries it
became manifest that the goals of Hilbert’s Program cannot be achieved.

The First Gödel Incompleteness Theorem

It is worth mentioning that Gödel worked within the intentions of Hilbert’s Program
and his Incompleteness Theorems appeared surprisingly on the way, without having been
planned or anticipated in advance. We will skip almost all technical issues of Gödel’s
proof and begin with displaying some final results of his coding of formulas and proofs by
natural numbers and representation of the provability relation by certain arithmetical
predicate. It should be noted that our presentation differs considerable from Gödel’s
original one.
Informally, the First Gödel Incompleteness Theorem states that any consistent formal

system which is sufficiently ample to include Peano Arithmetic is necessarily incomplete,
either in the sense that it contains some true propositions about natural numbers which
it cannot prove (semantic version), or in the sense that it contains certain arithmetical
propositions which it can neither prove nor refute (syntactic version).
Let’s begin with introducing some concepts necessary for describing more precisely

the variety of first order theories to which Gödel’s results apply. A first order theory
T in a language with finitely many specific symbols is called recursively axiomatizable
if it has just finitely many axioms or its axioms can be effectively recognized by some
algorithm (e.g., by a computer program). A first order theory T is called arithmetical if
there is some interpretation of Peano Arithmetic in this theory. This is to say that there
are some formulas Nat(x), Add(x, y, z), Mult(x, y, z), Zero(x), One(x) in the language of
T defining the concept of natural number, the operations of addition and multiplication
of natural numbers and the distinguished objects 0 and 1, respectively, in such a way
that for the structure of natural numbers thus obtained all the axioms of PA can be
proved in T . If T is an arithmetical theory then a formula φ in the language of T is
called arithmetical if it is built out of the “new” atomic formulas of the form x = y,
Add(x, y, z), Mult(x, y, z), Zero(x), One(x) by means of logical connectives and bounded
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quantifications (∀x)(Nat(x)⇒ φ), (∃x)(Nat(x)∧φ). An arithmetical theory T is called
arithmetically correct if all the arithmetical sentences provable in T are satisfied in
(N; +, ·, 0, 1).
An obvious example of a recursively axiomatizable arithmetically correct theory is

the Peano Arithmetic itself. Other paradigmatic examples of such theories are recursive
extensions of PA by axioms which are true in (N; +, ·, 0, 1), as well as various set theories
like, e.g., ZF or ZFC.
Given an arithmetical sentence θ we will say that θ is true or valid or satisfied if it is

satisfied in the standard model of Peano Arithmetic (N; +, ·, 0, 1). For an arithmetical
sentence of the form ψ(k1, . . . , kn), where ψ(x1, . . . , xn) is an arithmetical formula and
k1, . . . , kn are concrete natural numbers (constant arithmetical terms), we also use to
say that ψ(k1, . . . , kn) holds or, simply, ψ(k1, . . . , kn) in that case.
Gödel developed a method of coding or enumeration by means of which all the arith-

metical formulas in the language of an arithmetical theory T with a single free variable
x can be lined up in a sequence φ0(x), φ1(x), . . . , φn(x), . . . in such a way that, for each
n, the formula φn(x) can be effectively constructed (e.g., by a program), and vice versa,
for each arithmetical formula ψ(x), its number n such that ψ(x) coincides with φn(x)
can be effectively determined. If T is additionally recursively axiomatizable then also
all proofs in T can be lined up in a sequence ∆0,∆1, . . . ,∆k, . . . in such a way that the
correspondence k ↔ ∆k can be effectively described (e.g., executed by some programs)
in either direction. Moreover, in that case Gödel constructed two effectively decidable
ternary arithmetical predicates P (x, y, z) and R(x, y, z) of provability and refutability,
respectively, such that for any natural numbers k, m, n the following conditions are
satisfied:

P (m,n, k) if and only if ∆k is a proof of the sentence φn(m) in T ;

R(m,n, k) if and only if ∆k is a proof of the sentence ¬φn(m) in T .
At the same time the algorithmic decidability of the predicates P (x, y, z) and R(x, y, z)
ensures that, for any m,n, k ∈ N, the satisfaction of any of the statements P (m,n, k),
¬P (m,n, k), R(m,n, k), ¬R(m,n, k), respectively, in (N; +, ·, 0, 1) is equivalent to its
provability in PA, henceforth in T . Namely the algorithm deciding whether P (m,n, k)
holds or not provides the proof either of the statement P (m,n, k) or of its negation, and
similarly for R(m,n, k). Summing up, we have:

Theorem. Assume that T is a consistent recursively axiomatizable arithmetical theory.
Then, for any natural numbers m, n, k, the three conditions in each of the following
four rows are equivalent:

P (m,n, k) T ⊢ P (m,n, k) ∆k is a proof of the sentence φn(m) in T

R(m,n, k) T ⊢ R(m,n, k) ∆k is a proof of the sentence ¬φn(m) in T
¬P (m,n, k) T ̸⊢ P (m,n, k) T ⊢ ¬P (m,n, k)
¬R(m,n, k) T ̸⊢ R(m,n, k) T ⊢ ¬R(m,n, k)

In particular, T decides both the statements P (m,n, k) and R(m,n, k) for any m, n, k.



64

Now, we have all the necessary ingredients needed for the formulation of Gödel’s
results. Consider the formula ¬(∃ z)P (x, x, z). It has a single free variable, namely x,
hence it occurs in the sequence {φn(x)}n∈N under some number— let’s denote it g. Thus
φg(x) is the above formula, and substituting the natural number g into it for x we obtain
the sentence φg(g), i.e., ¬(∃ z)P (g, g, z), saying that, for no z = k, ∆k is the proof of
the sentence φg(g). In other words, the meaning of that sentence is:

φg(g) : “The sentence φg(g) is not provable in T .”

Hence φg(g) is an example of a self-referential sentence in the language of T declaring
its own unprovability. On the other hand, the reader should keep in mind that φg(g) is
an arithmetical statement, like, e.g., ¬(∃x, y, z)

(
(x+ 1)2 + (y + 2)3 = (z + 3)4

)
, saying

that the diophantic equation (x+1)2+(y+2)3 = (z+3)4 has no solution in the domain
of all natural numbers.
Thus our preliminary accounts entitle us to state the semantic version of Gödel’s First

Incompleteness Theorem.

First Gödel Incompleteness Theorem. [Semantic version] If T is a recursively
axiomatizable arithmetically correct first order theory then the Gödel’s sentence φg(g)
is true in (N; +, ·, 0, 1), nonetheless, it is unprovable in T . Thus T is incapable to prove
all the true arithmetical statements about natural numbers.

In particular, neither PA nor any of the set theories like, e.g., ZF or ZFC, can prove
all the true arithmetical statements about natural numbers.
Since we have no direct access to the infinite domain N of all natural numbers, the se-

mantic concept of arithmetical truth playing a key role in the semantic version of Gödel’s
First Incompleteness Theorem “smells of metaphysics” and may evoke some bewilder-
ment in the reader. It relies on our belief that (N; +, ·, 0, 1) is a model of PA, which,
however, can hardly be considered as an obvious or firmly and doubtlessly established
fact. Nonetheless, this semantic belief is even stronger than its syntactic counterpart,
namely the weaker belief in the consistency of PA, of which we still lack a direct and
immediate evidence. Anyway, it will be interesting to see what we can infer from this
weaker syntactic assumption.

First Gödel Incompleteness Theorem. [Syntactic version] Let T be a recursively
axiomatizable arithmetical theory.
(a) If T is consistent then the Gödel’s sentence φg(g) is unprovable in T .
(b) If T is ω-consistent then neither the sentence ¬φg(g) is provable in T .
Thus the assumption of ω-consistency of T implies that T is incomplete.

Let us remark that ω-consistency is a technical condition, stronger than mere consis-
tency, which we will formulate in the course of the demonstration of (b).

Demonstration. (a) Assume that the sentence φg(g) is provable in T . From this point
on we can proceed in two different ways. We will present both of them.
First, the provability of φg(g) means that this sentence has some proof, say ∆k, in T .

Then P (g, g, k) holds, and due to the algorithmic nature of the predicate P (x, y, z), the
statement P (g, g, k) is provable in T . It follows that (∃ z)P (g, g, z), which is equivalent
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to ¬φg(g), is provable in T , as well. Thus we have both T ⊢ φg(g) and T ⊢ ¬φg(g),
contradicting the consistency of T .
The second argument starts with realizing the form of φg(g): in fact we have assumed

that T ⊢ ¬(∃ z)P (g, g, z), hence T ⊢ (∀ z)¬P (g, g, z), since the second sentence is equiva-
lent to the first one. It follows that T ⊢ ¬P (g, g, k) for each k ∈ N. Therefore, ¬P (g, g, k)
holds for each k, by Theorem. . . . It means that none of the proofs ∆k is a proof of the
sentence φg(g) in T , in other words, φg(g) is unprovable in T . This contradicts our
original assumption which is henceforth wrong. Therefore φg(g) is unprovable in T .

(b) Assume that the sentence ¬φg(g), which is equivalent to (∃ z)P (g, g, z), is provable
in T . If there were some k ∈ N such that P (g, g, k), we could infer that ∆k is a proof of
φg(g) in T . Then both φg(g) as well as ¬φg(g) were provable in T , and we could refute
our initial assumption that T ⊢ ¬φg(g) as contradicting the mere consistency of T (and
get through without the assumption of its ω-consistency).
So does the provability of the arithmetical sentence (∃ z)P (g, g, z) imply that there

is indeed some k ∈ N such that P (g, g, k)? The positive answer to this question seems
obvious at a glance. If there were a constructive proof of the statement (∃ z)P (g, g, z),
it would give us some concrete k such that P (g, g, k). Unfortunately, we cannot exclude
that the proof of the statement (∃ z)P (g, g, z) proceeds in an indirect nonconstructive
way, just deriving a contradiction from the assumption ¬(∃ z)P (g, g, z), and giving not
even a hint how the k such that P (g, g, k) could be found. To conclude, our optimism
was precocious, and our original idea of demonstration doesn’t work. To get through we
need something more.
An arithmetical theory T is called ω-consistent if, for no arithmetical formula ψ(z),

all the sentences (∃ z)ψ(z), ¬ψ(0), ¬ψ(1), . . . , ¬ψ(k), . . . are provable in T . Obviously,
any ω-consistent arithmetical theory must be consistent.
Now assuming that T is ω-consistent and T ⊢ (∃ z)P (g, g, z), we can conclude that

T ̸⊢ ¬P (g, g, k) for some k. Then P (g, g, k) holds for this k by Theorem. . . . From this
point on the original argument can be applied.

The following Example illustrates the difference between a purely existential and a
constructive proof of an existential statement.

Example. We will prove the theorem:

“There exist irrational numbers a, b > 0 such that the number ab is rational.”

Proof. It is known (and easy to show) that
√
2 is an irrational number. Then the number

√
2
√
2
is either rational or irrational. If it is rational, we are done by taking a = b =

√
2.

If
√
2
√
2
is irrational, we put a =

√
2
√
2
and b =

√
2. Then both a, b are irrational and

ab =

(√
2
√
2
)√
2

=
(√
2
)(√2√2)

=
(√
2
)2
= 2

Since ab = 2 is obviously rational, we are done again.

The reader should realize that our proof is purely existential, making use of the Law

of Excluded Middle. We do not know whether the number
√
2
√
2
is rational or irrational,
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therefore we do not know which one of the couple of possibilities really works. From the
intuitionistic or constructivist viewpoint such proofs are unacceptable. A constructive

proof would require to decide whether
√
2
√
2
is rational or irrational and provide an

explicit unambiguous choice of the pair a, b.

In fact it is known, but not so easy to show, that the number
√
2
√
2
is irrational (hence

the second possibility takes place in the proof above).

Later on B. Rosser formulated a modification of Gödel’s statement ¬(∃ z)P (g, g, z)
making possible to avoid the assumption of ω-consistency and to prove the incomplete-
ness of recursively axiomatizable arithmetic theories assuming their mere consistency.
Consider the arithmetical formula (∀ z)(P (x, x, z) ⇒ (∃u ≤ z)R(x, x, u)). Let us

denote by r its number in the list {φn(x)}n∈N. Substituting r for x into the formula
φr(x) we obtain the self-referential sentence φr(r), i.e.,

(∀ z)(P (r, r, z) ⇒ (∃u ≤ z)R(r, r, u))

Its meaning can be deciphered as follows:

φr(r) : “If the sentence φr(r) is provable in T by some proof of a given number
then, among the proofs with at most that number, there is a proof

of its negation ¬φr(r) in T .”
Needless to say, the following version of the First Incompleteness Theorem is of syn-

tactic nature.

Gödel-Rosser Incompleteness Theorem. Let T be any recursively axiomatizable
arithmetical theory. If T is consistent then neither the Rosser sentence φr(r) nor its
negation ¬φr(r) are provable in T . Hence, if T is consistent then it is incomplete.

Demonstration. Assume that φr(r) is provable and ∆k is its proof in T . Then both the
statements P (r, r, k) and (∃u ≤ k)R(r, r, u) are provable in T , as well. The latter is
equivalent to the alternative

R(r, r, 0) ∨R(r, r, 1) ∨ . . . ∨R(r, r, k)

Then, however, it suffices to check the proofs ∆0, ∆1, . . . , ∆k and it is guaranteed
that one from among them is a proof of the sentence ¬φr(r) in T , contradicting its
consistency.
Now, assume that ¬φr(r) is provable in T by a proof ∆l. Then we have R(r, r, l), and

the algorithm verifying this fact provides a proof of R(r, r, l) in T . Realizing that ¬φr(r)
is equivalent to the sentence

(∃ z)
(
P (r, r, z) ∧ (∀u)(R(r, r, u)⇒ z < u)

)
we can infer that the statement (∃ z < l)P (r, r, z) is provable in T . Then necessarily
l > 0, and the last statement is equivalent to the alternative

P (r, r, 0) ∨ P (r, r, 1) ∨ . . . ∨ P (r, r, l − 1)
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Hence among the proofs ∆0, ∆1, . . . , ∆l−1, there is a proof of the sentence φr(r) in T ,
contradicting the consistency of T , again.

The Second Gödel Incompleteness Theorem

Informally, the Second Gödel Incompleteness Theorem states that any formal system
which is sufficiently ample to include Peano Arithmetic cannot prove its own consistency.
However, it should be realized that the statement that some formal system is consistent is
a statement about the system which is not even formulated in the language of the system,
thus the question of its provability within the system makes no sense. Hence it is a highly
important fact that some formal systems, in particular, all recursively axiomatizable
arithmetical first order theories, indeed allow for formulation of such statements.
Given an arithmetical theory T , we say that an arithmetical sentence θ is a consistency

statement for T if the consistency of T is equivalent to the validity of θ in (N; +, ·, 0, 1).
If T is additionally recursively axiomatizable then there are several possibilities how to
formulate the consistency statement for T .

(1) Let us recall that a theory T in a first order language L is inconsistent if there is
a sentence ψ in the language L such that both ψ and ¬ψ are provable in T . Accordingly,
the consistency statement can be formulated in following fairly suggestive way:

Cons1(T ) : ¬(∃x, y, z, w)(P (x, y, z) ∧R(x, y, w))

excluding the existence of any sentence of the form φn(m) such that both φn(m),
¬φm(m) were provable in T .
(2) Equivalently, T is inconsistent if and only if every L-sentence is provable in T .

Thus T is consistent if and only if there is at least one L-sentence ψ not provable in T .
We have a considerable freedom of choice for this sentence. In particular, we can follow
the “way of economy” suggested by John von Neumann and take Gödel’s statement
φg(g) for that purpose. Indeed, if φg(g) is provable in T then, as we already have seen,
T is inconsistent. The other way round, if φg(g) is unprovable in T then, of course, T is
consistent. Thus T is consistent if and only if φg(g) is not provable in T . This gives us
the consistency statement

Cons2(T ) : ¬(∃ z)P (g, g, z),

which coincides with the formerly introduced Gödel’s statement φg(g).

(3) Last but not least, we can take some logical axiom or some axiom of PA; then
the requirement of unprovability of its negation is clearly equivalent to the consistency
of T . In particular, let s ∈ N be the number of the formula x ̸= x. Then φs(0) is the
sentence 0 ̸= 0. That way we obtain yet another consistency statement:

Cons3(T ) : ¬(∃ z)P (0, s, z)

expressing the unprovability of the sentence 0 ̸= 0 in T .
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Exercise. (a) When dealing with the syntactic version of the First Gödel’s Incomplete-
ness Theorem, we have shown that from the provability of Gödel’s sentence φg(g) in T
there follows the provability of its negation ¬φg(g) in T . Taking for granted that the
implication

(∃ z)P (g, g, z)⇒ (∃u)R(g, g, u)

formalizing that account is provable in T , show that the implication

¬(∃x, y, z, w)(P (x, y, z) ∧R(x, y, w))⇒ ¬(∃ z)P (g, g, z)

is provable in T , as well. Therefore the provability of the consistency statement Cons1(T )
from (1) in T implies the same for Gödel’s sentence φg(g).
(b) Similarly as in (a), we can infer that from the provability of Gödel’s sentence

φg(g) there follows the provability of the sentence 0 ̸= 0 in T . Take for granted that the
implication

(∃ z)P (g, g, z)⇒ (∃u)P (0, s, u)

formalizing this account is provable in T and show that the provability of the consistency
statement Cons3(T ) from (3) in T implies the same for Gödel’s sentence φg(g), again.

Thus for a recursively axiomatizable arithmetical theory T with the provability pred-
icate P (x, y, z) and, possibly, with the refutability predicate R(z, y, z), the consistency
statement Cons(T ) can be formulated within its language by any of the three sentences
Cons1(T ), Cons2(T ), Cons3(T ) mentioned above (as well as by many more ones). At
the same time, the assumption of provability of any of these statements in T yields the
provability of Gödel’s sentence φg(g) in T . Summing up we have:

Second Gödel Incompleteness Theorem. Let T be a recursively axiomatizable
arithmetical theory. Then T allows for the formulation of its own consistency statement
Cons(T ). However, if T is consistent then any of the consistency statements Cons1(T ),
Cons2(T ), Cons3(T ) from the above list is unprovable in T .

If T is a consistent recursively axiomatizable arithmetical theory then, by Gödel’s
Second Incompleteness Theorem, the statement Cons(T ) is not provable in T , thus, due
to the Theorem on Proof by Contradiction, its extension T ∪ {¬Cons(T )} is consistent,
as well. However, as T is consistent, the axiom ¬Cons(T ) is not satisfied in (N; +, ·, 0, 1),
hence T ∪ {¬Cons(T )} cannot be arithmetically correct even if T is. Next we denote,
for definiteness’ sake, by Cons(T ) the Gödel’s statement φg(g). Then the statement
(∃ z)P (g, g, z), being logically equivalent to ¬Cons(T ), is provable in T ∪ {¬Cons(T )}.
However, since T is consistent, none of the proofs ∆k is a proof of the sentence φg(g),
i.e., of Cons(T ), in T , therefore all the statements ¬P (g, g, k), for k ∈ N, are true in
(N; +, ·, 0, 1), hence provable in T and the more in T ∪ {¬Cons(T )}. That way T ∪
{¬Cons(T )} is an example of a consistent theory which is not ω-consistent. On the
other hand, if T is arithmetically correct then so is T ∪ {Cons(T )}.
In the following two exercises T denotes a recursively axiomatizable arithmetical

theory with the provability predicate P (x, y, z) and refutability predicate R(x, y, z).
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Exercise. The initial account in (2) suggests the following formalization of the consis-
tency statement for T :

Cons4(T ) : (∃x, y)(∀ z)¬P (x, y, z)

declaring the existence of some sentence φn(m) unprovable in T . However, the fact that
its syntactic complexity (due to the quantifier prefix ∃∀ ) is one step higher than that
of the previous three consistency statements causes that it is not so easy to derive any
conclusions from the assumption of the provability of Cons4(T ) in T .
(a) Show that Cons4(T ) is a consistency statement for T .
(b) Examine the provability status of the consistency statement Cons4(T ) in T . Real-

ize that the mere assumption that T is consistent still does not allow us to show neither
that Cons4(T ) is provable nor that it is unprovable in T . Observe that the implica-
tion φg(g)⇒ Cons4(T ) is logically valid. Next, show that if T is ω-consistent then the
negation ¬Cons4(T ) is not provable in T .

Exercise. (a) Show that the Rosser formula φr(r) is not a consistency statement for T .
What about its negation ¬φr(r) ?
(b) Show that both the sentences ¬(∃ z)P (r, r, z),¬(∃u)R(r, r, u) are consistency

statements for T . What is their provability status?

In view of Gödel’s results it is perhaps surprising but anyway worthwhile to mention
that S. Feferman in 1960, at the cost of higher complexity, constructed a consistency
statement Cons∗(PA) for Peano Arithmetic which, nevertheless, is provable in PA. How-
ever, for such a consistency statement neither the equivalence Cons∗(PA)⇔ Consi(PA)
nor even the implication Cons∗(PA)⇒ Consi(PA), for any i = 1, 2, 3, is provable in PA
(unless PA is inconsistent).

Attempts at Completion

There naturally arises the question whether Peano Arithmetic cannot be completed by
adding to it some new axioms of which we know that they are satisfied in the standard
model (N; +, ·, 0, 1). One possible candidate could be recursively constructed as follows:
Let T0 be the theory PA itself. Given the theory Tq, for q ∈ N, we construct the sequence
∆q
0,∆

q
1, . . . , ∆

q
k, . . . of all proofs in Tq and the provability predicate Pq(x, y, z) for Tq such

that, for any k,m, n ∈ N,
Pq(m,n, k) if and only if ∆q

k is a proof of the sentence φn(m) in Tq
Then we put

Tq+1 = Tq ∪ {Cons(Tq)}

where Cons(Tq) is any of the consistency statements Consi(Tq) for fixed i = 1, . . . , 3.
In other words, Tq+1 is the extension of Tq by the consistency axiom Cons(Tq) for Tq.
Obviously, every Tq is a recursively axiomatizable arithmetically correct theory. Thus
putting

T̂ =
∪
q∈N

Tq
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we get an arithmetically correct theory in which all the consistency statements Cons(Tq)
can be proved. However, T̂ is still recursively axiomatizable, hence all the previous
incompleteness results apply to it. In particular, T̂ is incomplete, it can formulate its own
consistency statement Cons

(
T̂
)
which, nevertheless, it is incapable to prove. Moreover,

as shown by Alan Turing, Peano Arithmetic cannot be completed even by transfinite
iteration of the procedure of extending it by adding consecutive consistency statements
to it.
One of the aspects of the incompleteness of PA and related theories can be more

specifically identified as the phenomenon of ω-incompleteness, i.e., a kind of “nonuni-
formity” of provability in them. For instance, if ψ(x) is a formula in the language of PA
then the provability in PA of all the sentences ψ(m) for any m ∈ N still does not imply
the provability of its universal closure (∀x)ψ(x) in PA. It can namely happen that the
particular proofs of the individual instances ψ(0), ψ(1), . . . , ψ(m), . . . differ to such
an extent that it is impossible to compose a uniform proof of the universally quantified
statement (∀x)ψ(x) out of them. An arithmetical theory T is called ω-complete if this
cannot happen, i.e., if, for every arithmetical formula ψ(x), the provability in T of all the
particular instances ψ(m) for all m ∈ N already implies the provability of its universal
closure (∀x)ψ(x) in T .
A construction of a complete extension of PA based on the removal of the ω-incomplet-

eness phenomenon was proposed by S. Feferman in 1962. However, in order to extend PA
to both a complete and ω-complete theory he had to sacrifice the condition of recursive
axiomatization. By transfinite recursion over the ordinal numbers less than certain limit
ordinal ζ ≤ ωω

ω

he constructed a sequence of arithmetical theories {Tα}α<ζ and a
sequence of provability predicates

{
Pα(x, y, z)

}
α<ζ
for these theories such that

T0 = PA

Tα+1 = Tα ∪
{
(∀x)(∃ z)Pα(x, n, z)⇒ (∀x)φn(x) : n ∈ N

}
for each α < ζ

Tλ =
∪
α<λ

Tα for any limit ordinal λ < ζ

Adding the new axioms

(∀x)(∃ z)Pα(x, n, z)⇒ (∀x)φn(x)

for n ∈ N to the axioms of Tα guarantees the provability of every universally quantified
statement (∀x)φn(x) in Tα+1, once all its particular instances φn(m) for m ∈ N are
provable in Tα.
Finally, it can be shown that the arithmetical theory

T̃ =
∪
α<ζ

Tα

is not only ω-complete but also complete and ω-consistent. However, in order to de-
rive at this conclusion we have to assume that PA is consistent. Assuming that PA is
arithmetically correct, we can infer that so is T̃ .
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The Theorems of Tarski and Church-Turing

To complete the picture we formulate two further incompleteness results by A. Tarski,
and A. Church and A. Turing, respectively. Tarski’s Theorem on Undefinability of Truth
states informally that the property of arithmetical sentences “to be true” cannot be
defined by any formula in the language of those sentences. More precisely, it says that
the satisfaction relation for arithmetical formulas in the standard model (N; +, ·, 0, 1)
cannot be expressed by any arithmetical formula. In the theorems below we once again
refer to the sequence {φn(x)}n∈N of arithmetical formulas.

Tarski’s Theorem on Undefinability of Truth. Let T be any arithmetical first
order theory. Then there is no arithmetical formula σ(x, y) in the language of T such
that for any m,n ∈ N we have

(N; +, ·, 0, 1) ⊨ φn(m)⇔ σ(m,n)

Demonstration. Admit that such a formula σ(x, y) exists. Then ¬σ(x, x) is an arithmeti-
cal formula with a single free variable x, thus it can be found in the sequence {φn(x)}n∈N
under some index t ∈ N. Then the following statements are equivalent in (N; +, ·, 0, 1):
σ(t, t), φt(t), ¬σ(t, t). Hence

(N; +, ·, 0, 1) ⊨ σ(t, t)⇔ ¬σ(t, t)

which is contradiction.

Tarski’s Theorem, which is of semantic nature, imposes severe limitations on the
possibility of self-representation of arithmetical theories. In order to be able to define
a satisfaction formula σ(x, y) for T it is necessary to extend T to a first order theory
T ′ in a “metalanguage” whose expressive power goes beyond that of T . For example, a
satisfaction formula for Peano Arithmetic can be defined in the Second Order Arithmetic
or in the Zermelo-Fraenkel Set Theory.

Dealing with decidability questions both A. Church and A. Turing were heavily influ-
enced by the work of K. Gödel on completeness of the First Order Logic and even more
by his work on incompleteness of Peano Arithmetic and related theories. While Church
developed the so called λ-calculus and used it as a paradigmatic model of general com-
putations, Turing designed ideal models of computing devices which became known as
Turing machines. Soon it became clear that both approaches are equivalent. The proof
of their Undecidability Theorem is beyond the scope of our course.

Church-Turing Undecidability Theorem. Let T be any consistent recursively ax-
iomatizable arithmetical theory. Then there is no algorithm which could decide whether
any given arithmetical sentence in the language of T is provable in T . In particular,
there is no algorithm which could decide the question of provability in T of the sentence
φn(m) for every input (m,n) ∈ N× N.
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Church also proved that there is no algorithm which could decide whether a sentence
in a first order language L with at least one binary relational symbol or at least two oper-
ation symbols is a “first order tautology”, i.e., whether it is satisfied in all L-structures,
(or, which is the same, whether is provable just from the logical axioms). Thus there is
a striking difference between the First Order Logic and the Propositional Calculus in
which the tautologies can be effectively recognized by the truth table algorithm.

Compared with Tarski’s Theorem, Church-Turing Theorem is of syntactic charac-
ter. While Tarski’s Theorem imposes some limits to what can be expressed by formal
languages, Church-Turing Theorem sets up some limits to what can be computed by
any mechanical or electronic device or effectively decided by means of an algorithmic
computational procedure. However, they both, together with Gödel’s Incompleteness
Theorems, of course, raise various questions about the relation of computers, human
brains and human mind or spirit.

Goodstein Sequences:

An Example of a True Arithmetical Statement Unprovable in PA

It can be objected that the true statements unprovable in PA constructed by Gödel and
Rosser, like φg(g), φr(r), Cons(PA) (no matter which possibility we choose), are highly
artificial and deprived of proper mathematical meaning and content. However, there
are indeed several known arithmetical theorems of combinatorial or number theoretic
character which, nonetheless, are unprovable in PA. As a rule, they illustrate the ω-
incompleteness phenomenon at the same time. Some examples of universally quantified
statements of the form (∀x)ψ(x) unprovable in PA, nonetheless true in (N; +, ·, 0, 1) in
the sense that all the particular instances ψ(m) for each m ∈ N are even provable in
PA, are provided by the Paris-Harrington strengthening of Ramsey’s Theorem or by
the Goodstein sequences. Both these results are in fact equivalent to the consistency of
Peano Arithmetic. We will briefly explain the nature of the latter example.
Given a natural number b ≥ 2, the hereditary base b expansion of any natural number

m is obtained from the its usual base b expansion by expanding all its exponents at
the base b, again, doing the same with the exponents of exponents, and repeating this
procedure until all the numbers bigger than b are eliminated from this expression. For
instance, the hereditary base 2 expansion of the number m = 357 reads as follows:

357 = 28 + 26 + 25 + 22 + 1 = 22
3

+ 22
2+2 + 22

2+1 + 1

= 22
2+1

+ 22
2+2 + 22

2+1

+ 22
2+1 + 1

Its hereditary base 3 expansion is

357 = 35 + 34 + 33 + 2 · 3 = 33+2 + 33+1 + 33 + 2 · 3
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Similarly, the hereditary base 2 expansion of the number m = 1000 is

1 000 = 29 + 28 + 27 + 26 + 25 + 23

= 22
3+1 + 22

3

+ 22
2+2+1 + 22

2+2 + 22
2+1 + 22+1

= 22
2+1+1 + 22

2+1

+ 22
2+2+1 + 22

2+2 + 22
2+1 + 22+1

On the other hand, its hereditary base 5 expansion coincides with its plane base 5
expansion:

1 000 = 54 + 3 · 53

For any natural number m we construct the Goodstein sequence of natural numbers

G(m, 0), G(m, 1), G(m, 2), . . . , G(m,n), G(m,n+ 1), . . .

corresponding to m, which starts with G(m, 0) = m, and having arrived at the number
G(m,n), if G(m,n) > 0 then the next item G(m,n + 1) is obtained by replacing every
occurrence of the number n+2 in the hereditary base n+2 expansion of G(m,n) by the
number n + 3 and subtracting 1 from the result; if G(m,n) = 0 then G(m,n + 1) = 0,
as well. For example, for m = 29, we get

G(m, 0) = 24 + 23 + 22 + 1 = 22
2

+ 22+1 + 22 + 1

G(m, 1) = 33
3

+ 33+1 + 33 + 1− 1 = 33
3

+ 33+1 + 33 = 7625 597 485 095

G(m, 2) = 44
4

+ 44+1 + 44 − 1 = 44
4

+ 44+1 + 3 · 43 + 3 · 42 + 3 · 4 + 3 ≈ 1.340 · 10154

G(m, 3) = 55
5

+ 55+1 + 3 · 53 + 3 · 52 + 3 · 5 + 3− 1

= 55
5

+ 55+1 + 3 · 53 + 3 · 52 + 3 · 5 + 2 ∼ 102 200

G(m, 4) = 66
6

+ 66+1 + 3 · 63 + 3 · 62 + 3 · 6 + 2− 1

= 66
6

+ 66+1 + 3 · 63 + 3 · 62 + 3 · 6 + 1 ∼ 1036 305

G(m, 5) = 77
7

+ 77+1 + 3 · 73 + 3 · 72 + 3 · 7 + 1− 1

= 77
7

+ 77+1 + 3 · 73 + 3 · 72 + 3 · 7 ∼ 10696 000

. . . . . .

The above computations indicate that the Goodstein sequences {G(m,n)}∞n=0 grow
rapidly for any m, and not just for the particular value m = 29. Thus the following
result is highly surprising and unexpected.

Goodstein’s Theorem [1944]. For every natural number m there exists a natural
number n such that G(m,n) = 0.

In fact, for m ≤ 3, the sequence {G(m,n)}∞n=0 assumes the value 0 fairly quickly. The
reader can easily verify that G(0, n) = 0, for each n, G(1, 0) = 1, G(1, n) = 0 for n ≥ 1,
G(2, 0) = G(2, 1) = 2, G(2, 2) = 1 and G(2, n) = 0 for n ≥ 3. For m = 3 we have

G(3, 0) = 3 = 2 + 1 G(3, 1) = 3 + 1− 1 = 3 G(3, 2) = 4− 1 = 3
G(3, 3) = 3− 1 = 2 G(3, 4) = 2− 1 = 1 G(3, 5) = 0 = G(3, n) for n > 5
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For m = 4 the first n such that G(4, n) = 0 equals the immense value 3 ·
(
2402 653 211−1

)
.

Formally, the proof of Goodstein’s Theorem uses transfinite induction over the count-
able well-ordered set of all ordinal numbers less than the ordinal

ε0 = ω
ωω··

·

i.e., the first ordinal α satisfying ωα = α. However, the main idea of this proof can be
explained easily. It consists in dominating every sequence {G(m,n)}∞n=0, withm fixed, by
a sequence {Γ (m,n)}∞n=0 of ordinal numbers Γ (m,n) < ε0 such that G(m,n) ≤ Γ (m,n)
and Γ (m,n) > Γ (m,n+1) whenever Γ (m,n) > 0, for each n. Since the set of all ordinals
< ε0 is well-ordered by the relation < , it cannot contain any infinite strictly decreasing
sequence. Hence each of the sequences {Γ (m,n)}∞n=0 must eventually stabilize at the
value Γ (m,n) = 0 for some n. Then G(m,n) = 0, as well.
The ordinal number Γ (m,n) is obtained by replacing each occurrence of the term

n + 2 in the hereditary base n + 2 expansion of the number G(m,n) by the ordinal ω.
In the particular case m = 29 we have

G(m, 0) = 22
2
+ 22+1 + 22 + 1 < ωω

ω

+ ωω+1 + ωω + 1 = Γ (m, 0)

G(m, 1) = 33
3
+ 33+1 + 33 < ωω

ω

+ ωω+1 + ωω = Γ (m, 1)

G(m, 2) = 44
4
+44+1+3·43+3·42+3·4+3 < ωω

ω

+ωω+1+3·ω3+3·ω2+3·ω+3 = Γ (m, 2)

G(m, 3) = 55
5
+55+1+3·53+3·52+3·5+2 < ωω

ω

+ωω+1+3·ω3+3·ω2+3·ω+2 = Γ (m, 3)

G(m, 4) = 66
6
+66+1+3·63+3·62+3·6+1 < ωω

ω

+ωω+1+3·ω3+3·ω2+3·ω+1 = Γ (m, 4)

G(m, 5) = 77
7
+77+1+3 ·73+3 ·72+3 ·7 < ωω

ω

+ωω+1+3 ·ω3+3 ·ω2+3 ·ω = Γ (m, 5)
. . . . . .

Then the sequence of ordinals

Γ (m, 0) = ωω
ω

+ ωω+1 + ωω + 1

> Γ (m, 1) = ωω
ω

+ ωω+1 + ωω

> Γ (m, 2) = ωω
ω

+ ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω + 3

> Γ (m, 3) = ωω
ω

+ ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω + 2

> Γ (m, 4) = ωω
ω

+ ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω + 1

> Γ (m, 5) = ωω
ω

+ ωω+1 + 3 · ω3 + 3 · ω2 + 3 · ω

> . . .

cannot decrease for ever, hence it must eventually stabilize at the value Γ (m,n) = 0 for
some unimaginably huge value of n. For that n also G(m,n) = 0.

As shown by J. Paris and L. Kirby, Goodstein’s Theorem cannot be proved just by
means of the Peano Arithmetic alone.
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Paris-Kirby Theorem [1982]. In PA it is provable that Goodstein’s Theorem implies
the consistency statement Cons(PA). As a consequence, if PA is consistent then Good-
stein’s Theorem is not provable in PA.

On the other hand, for any fixed m ∈ N, the existential statement (∃ y)(G(m, y) = 0)
is provable in PA. We know this though already for rather small values of m we not
only do not know the precise value of such a y = n but we even do not dispose of
any explicit proof of that statement in PA. We only know that the primitive step-by-
step computation must eventually produce the result. However, this computation will
not terminate within the existence not only of the mankind but of the entire universe.
At the same time, as an illustration of the ω-incompleteness phenomenon mentioned
in connection with Feferman’s construction, it should be realized that within PA it is
impossible to extract any general common idea out of those particular proofs and convert
them into a single proof of the universal-existential sentence (∀x)(∃ y)(G(x, y) = 0).

Philosophical Consequences

Themes for an Essay

There is a vast literature dealing with mathematical, philosophical, metaphysical and
others extra-mathematical consequences of Gödel’s Incompleteness Theorems and some
related results. Let us confine to a brief list of some traditionally inferred conclusions:

(1) Human knowledge is necessarily incomplete and we never can be sure that it is free
of contradictions.

(2) Human knowledge cannot be reduced to any formal system. By realizing the incom-
pleteness phenomena inherent for such systems we are capable to transcend their
limitations.

(3) Computers can compute and prove just within the scope of some formal system.
Humans, however, are able to seize and reveal some truths unprovable within any
formal system. It follows that human brain— in spite of the fact that with re-
spect to some parameters (as, e.g., the speed of computation) it is far behind the
computers— still possesses some capabilities making it superior to any computer.

It is extremely interesting to present some Gödel’s ideas upon these issues here. Gödel
namely went a step farther beyond (3). According to him, we all probably agree that
computers can compute and prove just within the scope of some formal system given in
advance. Similarly, the activity of human brain can in principle be simulated by certain
computer (though we do not dispose of such computers at present). However, human
beings are capable of viewing or grasping even some truths unprovable within any formal
system. It follows that human mind or human intellect or human spirit, however we call
it, is endowed not only with some capabilities which make it superior to any computer
but also with some faculties which cannot be explained as a mere manifestation of the
activity and functioning of human brain.1

1Freely quoted according to Hao Wang [9].
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Try to ponder over the above quoted conclusions and opinions. To which degree you
agree or disagree with any of them and why? To which degree can the above conclusions
be justified by the incompleteness results we have been dealing with? Discuss those
points and try to make them more precise, finally arriving at some formulations you can
agree with. To which degree follow your conclusions from the results of Gödel, Rosser,
Tarski, Church and Turing?
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